2024屆湖北省荊州開發(fā)區(qū)灘橋中學數(shù)學高一第二學期期末考試模擬試題含解析_第1頁
2024屆湖北省荊州開發(fā)區(qū)灘橋中學數(shù)學高一第二學期期末考試模擬試題含解析_第2頁
2024屆湖北省荊州開發(fā)區(qū)灘橋中學數(shù)學高一第二學期期末考試模擬試題含解析_第3頁
2024屆湖北省荊州開發(fā)區(qū)灘橋中學數(shù)學高一第二學期期末考試模擬試題含解析_第4頁
2024屆湖北省荊州開發(fā)區(qū)灘橋中學數(shù)學高一第二學期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆湖北省荊州開發(fā)區(qū)灘橋中學數(shù)學高一第二學期期末考試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,且,則()A. B. C. D.2.我國古代著名的周髀算經(jīng)中提到:凡八節(jié)二十四氣,氣損益九寸九分六分分之一;冬至晷長一丈三尺五寸,夏至晷長一尺六寸意思是:一年有二十四個節(jié)氣,每相鄰兩個節(jié)氣之間的日影長度差為分;且“冬至”時日影長度最大,為1350分;“夏至”時日影長度最小,為160分則“立春”時日影長度為A.分 B.分 C.分 D.分3.在三棱錐中,平面,,,點M為內(nèi)切圓的圓心,若,則三棱錐的外接球的表面積為()A. B. C. D.4.袋子中有大小、形狀完全相同的四個小球,分別寫有“和”、“諧”、“?!薄ⅰ皥@”四個字,有放回地從中任意摸出一個小球,直到“和”、“諧”兩個字都摸到就停止摸球,用隨機模擬的方法估計恰好在第三次停止摸球的概率。利用電腦隨機產(chǎn)生到之間取整數(shù)值的隨機數(shù),分別用,,,代表“和”、“諧”、“校”、“園”這四個字,以每三個隨機數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下組隨機數(shù):由此可以估計,恰好第三次就停止摸球的概率為()A. B. C. D.5.下圖為某市國慶節(jié)7天假期的樓房認購量與成交量的折線圖,小明同學根據(jù)折線圖對這7天的認購量(單位:套)與成交量(單位:套)作出如下判斷:①日成交量的中位數(shù)是26;②日成交量超過日平均成交量的有2天;③認購量與日期正相關(guān);④10月2日到10月6日認購量的分散程度比成交量的分散程度更大.則上述判斷錯誤的個數(shù)為()A.4 B.3 C.2 D.16.圓心為的圓與圓相外切,則圓的方程為()A. B.C. D.7.設(shè)是上的偶函數(shù),且在上是減函數(shù),若且,則()A. B.C. D.與大小不確定8.如果直線l過點(2,1),且在y軸上的截距的取值范圍為(﹣1,2),那么l的斜率k的取值范圍是()A.(,1) B.(﹣1,1)C.(﹣∞,)∪(1,+∞) D.(﹣∞,﹣1)∪(1,+∞)9.已知,則的值為()A. B. C. D.210.已知,,那么等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.過點直線與軸的正半軸,軸的正半軸分別交于、兩點,為坐標原點,當最小時,直線的一般方程為______.12.在平面直角坐標系中,從五個點:中任取三個,這三點能構(gòu)成三角形的概率是_______.13.函數(shù)的定義域為________14.在空間直角坐標系中,三棱錐的各頂點都在一個半徑為的球面上,為球心,,,,,則球的體積與三棱錐的體積之比是_____.15.一個社會調(diào)查機構(gòu)就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如下圖).為了分析居民的收入與年齡、學歷、職業(yè)等方面的關(guān)系,要從這10000人中再用分層抽樣方法抽出80人作進一步調(diào)查,則在[1500,2000)(元)月收入段應抽出人.16.函數(shù)在內(nèi)的單調(diào)遞增區(qū)間為____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列為等比數(shù)列,,公比,且成等差數(shù)列.(1)求數(shù)列的通項公式;(2)設(shè),,求使的的取值范圍.18.已知圓心在直線上的圓C經(jīng)過點,且與直線相切.(1)求過點P且被圓C截得的弦長等于4的直線方程;(2)過點P作兩條相異的直線分別與圓C交于A,B,若直線PA,PB的傾斜角互補,試判斷直線AB與OP的位置關(guān)系(O為坐標原點),并證明.19.如圖,在三棱錐P-ABC中,PA⊥底面ABC,D是PC的中點.已知∠BAC=,AB=2,AC=2,PA=2.求:(1)三棱錐P-ABC的體積;(2)異面直線BC與AD所成的角的大小(結(jié)果用反三角函數(shù)值表示).20.如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED為矩形,平面BFED⊥平面ABCD,BF=1.(1)求證:AD⊥平面BFED;(2)點P在線段EF上運動,設(shè)平面PAB與平面ADE所成銳二面角為θ,試求θ的最小值.21.已知數(shù)列是等差數(shù)列,,.(1)從第幾項開始;(2)求數(shù)列前n項和的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

根據(jù),,利用平方關(guān)系得到,再利用商數(shù)關(guān)系得到,最后用兩和的正切求解.【題目詳解】因為,,所以,所以,所以.故選:A【題目點撥】本題主要考查了同角三角函數(shù)基本關(guān)系式和兩角和的正切公式,還考查了運算求解的能力,屬于中檔題.2、B【解題分析】

首先“冬至”時日影長度最大,為1350分,“夏至”時日影長度最小,為160分,即可求出,進而求出立春”時日影長度為.【題目詳解】解:一年有二十四個節(jié)氣,每相鄰兩個節(jié)氣之間的日影長度差為分,且“冬至”時日影長度最大,為1350分;“夏至”時日影長度最小,為160分.,解得,“立春”時日影長度為:分.故選B.【題目點撥】本題考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,利用等差數(shù)列的性質(zhì)直接求解.3、C【解題分析】

求三棱錐的外接球的表面積即求球的半徑,則球心到底面的距離為,根據(jù)正切和MA的長求PA,再和MA的長即可通過勾股定理求出球半徑R,則表面積.【題目詳解】取BC的中點E,連接AE(圖略).因為,所以點M在AE上,因為,,所以,則的面積為,解得,所以.因為,所以.設(shè)的外接圓的半徑為r,則,解得.因為平面ABC,所以三棱錐的外接球的半徑為,故三棱錐P-ABC的外接球的表面積為.【題目點撥】此題關(guān)鍵點通過題干信息畫出圖像,平面ABC和底面的內(nèi)切圓圓心確定球心的位置,根據(jù)幾何關(guān)系求解即可,屬于三棱錐求外接球半徑基礎(chǔ)題目.4、B【解題分析】

隨機模擬產(chǎn)生了18組隨機數(shù),其中第三次就停止摸球的隨機數(shù)有4個,由此可以估計,恰好第三次就停止摸球的概率.【題目詳解】隨機模擬產(chǎn)生了以下18組隨機數(shù):343432341342234142243331112342241244431233214344142134其中第三次就停止摸球的隨機數(shù)有:142,112,241,142,共4個,由此可以估計,恰好第三次就停止摸球的概率為p.故選:B.【題目點撥】本題考查概率的求法,考查列舉法等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.5、B【解題分析】

將國慶七天認購量和成交量從小到大排列,即可判斷①;計算成交量的平均值,可由成交量數(shù)據(jù)判斷②;由圖可判斷③;計算認購量的平均值與方差,成交量的平均值與方差,對方差比較即可判斷④.【題目詳解】國慶七天認購量從小到大依次為:91,100,105,107,112,223,276成交量從小到大依次為:8,13,16,26,32,38,166對于①,成交量的中為數(shù)為26,所以①正確;對于②,成交量的平均值為,有1天成交量超過平均值,所以②錯誤;對于③,由圖可知認購量與日期沒有正相關(guān)性,所以③錯誤;對于④,10月2日到10月6日認購量的平均值為方差為10月2日到10月6日成交量的平均值為方差為所以由方差性質(zhì)可知,10月2日到10月6日認購量的分散程度比成交量的分散程度更小,所以④錯誤;綜上可知,錯誤的為②③④故選:B【題目點撥】本題考查了統(tǒng)計的基本內(nèi)容,由圖示分析計算各個量,利用方差比較數(shù)據(jù)集中程度,屬于基礎(chǔ)題.6、A【解題分析】

求出圓的圓心坐標和半徑,利用兩圓相外切關(guān)系,可以求出圓的半徑,求出圓的標準方程,最后化為一般式方程.【題目詳解】設(shè)的圓心為A,半徑為r,圓C的半徑為R,,所以圓心A坐標為,半徑r為3,圓心距為,因為兩圓相外切,所以有,故圓的標準方程為:,故本題選A.【題目點撥】本題考查了圓與圓的相外切的性質(zhì),考查了已知圓的方程求圓心坐標和半徑,考查了數(shù)學運算能力.7、A【解題分析】試題分析:由是上的偶函數(shù),且在上是減函數(shù),所以在上是增函數(shù),因為且,所以,所以,又因為,所以,故選A.考點:函數(shù)奇偶性與單調(diào)性的綜合應用.【方法點晴】本題主要考查了函數(shù)的單調(diào)性與奇偶性的綜合應用,其中解答中涉及函數(shù)的單調(diào)性和函數(shù)奇偶性的應用等知識點,本題的解答中先利用偶函數(shù)的圖象的對稱性得出在上是增函數(shù),然后在利用題設(shè)條案件把自變量轉(zhuǎn)化到區(qū)間上是解答的關(guān)鍵,著重考查了學生分析問題和解答問題的能力,以及轉(zhuǎn)化與化歸思想的應用,試題有一定的難度,屬于中檔試題.8、A【解題分析】

利用直線的斜率公式,求出當直線經(jīng)過點時,直線經(jīng)過點時的斜率,即可得到結(jié)論.【題目詳解】設(shè)要求直線的斜率為,當直線經(jīng)過點時,斜率為,當直線經(jīng)過點時,斜率為,故所求直線的斜率為.故選:A.【題目點撥】本題主要考查直線的斜率公式,屬于基礎(chǔ)題.9、B【解題分析】

根據(jù)兩角和的正切公式,結(jié)合,可以求出的值,用同角的三角函數(shù)的關(guān)系式中的平方和關(guān)系把等式變成分子、分母的齊次式形式,最后代入求值即可.【題目詳解】..故選:B【題目點撥】本題考查了同角的三角函數(shù)關(guān)系式的應用,考查了二倍角的正弦公式,考查了兩角和的正切公式,考查了數(shù)學運算能力.10、B【解題分析】

首先求出題中,,之間的關(guān)系,然后利用正切的和角公式求解即可.【題目詳解】由題知,,所以.故選:B.【題目點撥】本題考查了正切的和角公式,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

設(shè)直線的截距式方程為,利用該直線過可得,再利用基本不等式可求何時即取最小值,從而得到相應的直線方程.【題目詳解】設(shè)直線的截距式方程為,其中且.因為直線過,故.所以,由基本不等式可知,當且僅當時等號成立,故當取最小值時,直線方程為:.填.【題目點撥】直線方程有五種形式,常用的形式有點斜式、斜截式、截距式、一般式,垂直于的軸的直線沒有點斜式、斜截式和截距式,垂直于軸的直線沒有截距式,注意根據(jù)題設(shè)所給的條件選擇合適的方程的形式,特別地,如果考慮的問題是與直線、坐標軸圍成的直角三角形有關(guān)的問題,可考慮利用截距式.12、【解題分析】

分別算出兩點間的距離,共有種,構(gòu)成三角形的條件為任意兩邊之和大于第三邊,所以在這10種中找出滿足條件的即可.【題目詳解】由兩點之間的距離公式,得:,,,任取三點有:,共10種,能構(gòu)成三角形的有:,共6種,所求概率為:.【題目點撥】構(gòu)成三角形必須滿足任意兩邊之和大于第三邊,則n個點共有個線段,找出滿足條件的即可,屬于中等難度題目.13、【解題分析】

根據(jù)反余弦函數(shù)的定義,可得函數(shù)滿足,即可求解.【題目詳解】由題意,根據(jù)反余弦函數(shù)的定義,可得函數(shù)滿足,解得,即函數(shù)的定義域為.故答案為:【題目點撥】本題主要考查了反余弦函數(shù)的定義的應用,其中解答中熟記反余弦函數(shù)的定義,列出不等式求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.14、【解題分析】

首先根據(jù)坐標求出三棱錐的體積,再計算出球的體積即可.【題目詳解】有題知建立空間直角坐標系,如圖所示由圖知:平面,...故答案為:【題目點撥】本題主要考查三棱錐的外接球,根據(jù)題意建立空間直角坐標系為解題的關(guān)鍵,屬于中檔題.15、16【解題分析】試題分析:由頻率分布直方圖知,收入在1511--2111元之間的概率為1.1114×511=1.2,所以在[1511,2111)(元)月收入段應抽出81×1.2=16人??键c:?頻率分布直方圖的應用;?分層抽樣。16、【解題分析】

將函數(shù)進行化簡為,求出其單調(diào)增區(qū)間再結(jié)合,可得結(jié)論.【題目詳解】解:,遞增區(qū)間為:,可得,在范圍內(nèi)單調(diào)遞增區(qū)間為。故答案為:.【題目點撥】本題考查了正弦函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】

(1)利用等差中項的性質(zhì)列方程,并轉(zhuǎn)化為的形式,由此求得的值,進而求得數(shù)列的通項公式.(2)先求得的表達式,利用裂項求和法求得,解不等式求得的取值范圍.【題目詳解】解:(1)∵成等差數(shù)列,得,∵等比數(shù)列,且,∴解得或又,∴,∴(2)∵,∴∴故由,得.【題目點撥】本小題主要考查等差中項的性質(zhì),考查等比數(shù)列基本量的計算,考查裂項求和法,考查不等式的解法,屬于中檔題.18、(1)或;(2)平行【解題分析】

(1)設(shè)出圓的圓心為,半徑為,可得圓的標準方程,根據(jù)題意可得,解出即可得出圓的方程,討論過點P的直線斜率存在與否,再根據(jù)點到直線的距離公式即可求解.(2)由題意知,直線PA,PB的傾斜角互補,分類討論兩直線的斜率存在與否,當斜率均存在時,則直線PA的方程為:,直線PB的方程為:,分別與圓C聯(lián)立可得,利用斜率的計算公式與作比較即可.【題目詳解】(1)根據(jù)題意,不妨設(shè)圓C的圓心為,半徑為,則圓C,由圓C經(jīng)過點,且與直線相切,則,解得,故圓C的方程為:,所以點在圓上,過點P且被圓C截得的弦長等于4的直線,當直線的斜率不存在時,直線為:,滿足題意;當直線的斜率存在時,設(shè)直線的斜率為,直線方程為:,故,解得,故直線方程為:.綜上所述:所求直線的方程:或.(2)由題意知,直線PA,PB的傾斜角互補,且直線PA,PB的斜率均存在,設(shè)兩直線的傾斜角為和,,,因為,由正切的性質(zhì),則,不妨設(shè)直線的斜率為,則PB的斜率為,即:,則:,由,得,點的橫坐標為一定是該方程的解,故可得,同理,,,,直線AB與OP平行.【題目點撥】本題考查了圓的標準方程,已知弦長求直線方程,考查了直線與圓的位置關(guān)系以及學生的計算能力,屬于中檔題.19、(1);(2).【解題分析】

(1),三棱錐P-ABC的體積為.(2)取PB的中點E,連接DE、AE,則ED∥BC,所以∠ADE(或其補角)是異面直線BC與AD所成的角.在三角形ADE中,DE=2,AE=,AD=2,,所以∠ADE=.因此,異面直線BC與AD所成的角的大小是.20、(1)證明見解析(2)θ最小值為60°【解題分析】

(1)在梯形ABCD中,利用勾股定理,得到AD⊥BD,再結(jié)合面面垂直的判定,證得DE⊥平面ABCD,即可證得AD⊥平面BFED;(2)以D為原點,直線DA,DB,DE分別為x軸,y軸,z軸建立如圖所示的空間直角坐標系,求得平面PAB與平面ADE法向量,利用向量的夾角公式,即可求解?!绢}目詳解】(1)證明:在梯形ABCD中,∵AB∥CD,AD=DC=CB=1,∠BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論