安徽省淮南四中2024屆數(shù)學高一下期末教學質量檢測試題含解析_第1頁
安徽省淮南四中2024屆數(shù)學高一下期末教學質量檢測試題含解析_第2頁
安徽省淮南四中2024屆數(shù)學高一下期末教學質量檢測試題含解析_第3頁
安徽省淮南四中2024屆數(shù)學高一下期末教學質量檢測試題含解析_第4頁
安徽省淮南四中2024屆數(shù)學高一下期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省淮南四中2024屆數(shù)學高一下期末教學質量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.如圖,正方體中,異面直線與所成角的正弦值等于A. B. C. D.13.已知奇函數(shù)滿足,則的取值不可能是()A.2 B.4 C.6 D.104.設函數(shù),則是()A.最小正周期為的奇函數(shù) B.最小正周期為的偶函數(shù)C.最小正周期為的奇函數(shù) D.最小正周期為的偶函數(shù)5.設,且,則的最小值為()A. B. C. D.6.在等比數(shù)列中,則()A.81 B. C. D.2437.素數(shù)指整數(shù)在一個大于1的自然數(shù)中,除了1和此整數(shù)自身外,不能被其他自然數(shù)整除的數(shù)。我國數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果。哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)的和”,如。在不超過15的素數(shù)中,隨機選取兩個不同的數(shù),其和小于18的概率是()A. B. C. D.8.不等式的解集為()A. B. C. D.9.將函數(shù)的圖像先向右平移個單位,再將所得的圖像上每個點的橫坐標變?yōu)樵瓉淼谋叮玫降膱D像,則的可能取值為()A. B. C. D.10.為奇函數(shù),當時,則時,A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.圓與圓的公共弦長為______________。12.已知直線l在y軸上的截距為1,且垂直于直線,則的方程是____________.13.設無窮等比數(shù)列的公比為,若,則__________________.14.若存在實數(shù)使得關于的不等式恒成立,則實數(shù)的取值范圍是____.15.球的內接圓柱的表面積為,側面積為,則該球的表面積為_______16.若等差數(shù)列和等比數(shù)列滿足,,則_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知.(1)設,求滿足的實數(shù)的值;(2)若為上的奇函數(shù),試求函數(shù)的反函數(shù).18.在一個盒子中裝有6支圓珠筆,其中3支一等品,2支二等品和1支三等品,從中任取3支.求(1)恰有1支一等品的概率;(2)恰有兩支一等品的概率;(3)沒有三等品的概率.19.如圖所示,函數(shù)的圖象與軸交于點,且該函數(shù)的最小正周期為.(1)求和的值;(2)已知點,點是該函數(shù)圖象上一點,點是的中點,當時,求的值.20.已知向量,.(1)當為何值時,與垂直?(2)若,,且三點共線,求的值.21.已知角的終邊經過點.(1)求的值;(2)求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

根據(jù)和之間能否推出的關系,得到答案.【題目詳解】由可得,由,得到或,,不能得到,所以“”是“”的充分不必要條件,故選:A.【題目點撥】本題考查充分不必要條件的判斷,屬于簡單題.2、D【解題分析】

由線面垂直的判定定理得:,又,所以面,由線面垂直的性質定理得:,即可求解.【題目詳解】解:連接,因為四邊形為正方形,所以,又,所以面,所以,所以異面直線與所成角的正弦值等于1,故選D.【題目點撥】本題考查了線面垂直的判定定理及性質定理,屬中檔題.3、B【解題分析】

由三角函數(shù)的奇偶性和對稱性可求得參數(shù)的值.【題目詳解】由是奇函數(shù)得又因為得關于對稱,所以,解得所以當時,得A答案;當時,得C答案;當時,得D答案;故選B.【題目點撥】本題考查三角函數(shù)的奇偶性和對稱性,屬于基礎題.4、D【解題分析】函數(shù),化簡可得f(x)=–cos2x,∴f(x)是偶函數(shù).最小正周期T==π,∴f(x)最小正周期為π的偶函數(shù).故選D.5、D【解題分析】

本題首先可將轉化為,然后將其化簡為,最后利用基本不等式即可得出結果.【題目詳解】,當且僅當,即時成立,故選D.【題目點撥】本題考查利用基本不等式求最值,基本不等式公式為,考查化歸與轉化思想,是簡單題.6、A【解題分析】解:因為等比數(shù)列中,則,選A7、B【解題分析】

找出不超過15的素數(shù),從其中任取2個共有多少種取法,找到取出的兩個和小于18的個數(shù),根據(jù)古典概型求解即可.【題目詳解】不超過15的素數(shù)為,共6個,任取2個分別為,,,,,,,,,,,,,,,共15個基本事件,其中兩個和小于18的共有11個基本事件,根據(jù)古典概型概率公式知.【題目點撥】本題主要考查了古典概型,基本事件,屬于中檔題.8、A【解題分析】

因式分解求解即可.【題目詳解】,解得.故選:A【題目點撥】本題主要考查了二次不等式的求解,屬于基礎題.9、D【解題分析】由題意結合輔助角公式有:,將函數(shù)的圖像先向右平移個單位,所得函數(shù)的解析式為:,再將所得的圖像上每個點的橫坐標變?yōu)樵瓉淼谋叮煤瘮?shù)的解析式為:,而,據(jù)此可得:,據(jù)此可得:.本題選擇D選項.10、C【解題分析】

利用奇函數(shù)的定義,結合反三角函數(shù),即可得出結論.【題目詳解】又,時,,故選:C.【題目點撥】本題考查奇函數(shù)的定義、反三角函數(shù),考查學生的計算能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

利用兩圓一般方程求兩圓公共弦方程,求其中一圓到公共弦的距離,利用直線被圓截得的弦長公式可得所求.【題目詳解】由兩圓方程相減得兩圓公共弦方程為,即,圓化為,圓心到直線的距離為1,所以兩圓公共弦長為,故答案為.【題目點撥】本題考查兩圓位置關系,直線與圓的位置關系,考查運算能力,屬于基本題.12、;【解題分析】試題分析:設垂直于直線的直線為,因為直線在軸上的截距為,所以,所以直線的方程是.考點:兩直線的垂直關系.13、【解題分析】

由可知,算出用表示的極限,再利用性質計算得出即可.【題目詳解】顯然公比不為1,所以公比為的等比數(shù)列求和公式,且,故.此時當時,求和極限為,所以,故,所以,故,又,故.故答案為:.【題目點撥】本題主要考查等比數(shù)列求和公式,當時.14、【解題分析】

先求得的取值范圍,將題目所給不等式轉化為含的絕對值不等式,對分成三種情況,結合絕對值不等式的解法和不等式恒成立的思想,求得的取值范圍.【題目詳解】由于,故可化簡得恒成立.當時,顯然成立.當時,可得,,可得且,可得,即,解得.當時,可得,可得且,可得,即,解得.綜上所述,的取值范圍是.【題目點撥】本小題主要考查三角函數(shù)的值域,考查含有絕對值不等式恒成立問題,考查存在性問題的求解策略,考查函數(shù)的單調性,考查化歸與轉化的數(shù)學思想方法,屬于難題.15、【解題分析】

設底面半徑為,圓柱的高為,根據(jù)圓柱求得和的值,進而利用圓柱的軸截面求得球的半徑,利用球的表面積公式,即可求解.【題目詳解】由題意,設底面半徑為,圓柱的高為,則圓柱的底面面積為,解得,側面積,解得,則圓柱的軸截面是邊長分別為4和3的矩形,其對角線長為5,所以外接球的半徑為,所以球的表面積為.【題目點撥】本題主要考查了圓柱的表面積和側面積公式的應用,以及球的表面積公式應用,其中解答中正確理解空間幾何體的結構特征是解答的關鍵,著重考查了空間想象能力,以及推理與運算能力,屬于基礎題.16、【解題分析】

設等差數(shù)列的公差為,等比數(shù)列的公比為,根據(jù)題中條件求出、的值,進而求出和的值,由此可得出的值.【題目詳解】設等差數(shù)列的公差和等比數(shù)列的公比分別為和,則,求得,,那么,故答案為.【考點】等差數(shù)列和等比數(shù)列【題目點撥】等差、等比數(shù)列各有五個基本量,兩組基本公式,而這兩組公式可看作多元方程,利用這些方程可將等差、等比數(shù)列中的運算問題轉化為解關于基本量的方程(組)問題,因此可以說數(shù)列中的絕大部分運算題可看作方程應用題,所以用方程思想解決數(shù)列問題是一種行之有效的方法.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】

(1)把代入函數(shù)解析式,代入方程即可求解.(2)由函數(shù)奇偶性得,然后求得的解析式,分段求解反函數(shù)即可.【題目詳解】(1)當時,,由,得,即,解得.(2)為上的奇函數(shù),,則.,由,,得,;由,,得,.函數(shù)的反函數(shù)為.【題目點撥】本題主要考查了函數(shù)的解析式及求法,考查了反函數(shù)的求法,屬于中檔題.18、(1);(2);(3).【解題分析】

(1)恰有一支一等品,從3支一等品中任取一支,從二、三等品種任取兩支利用分布乘法原理計算后除以基本事件總數(shù);(2)恰有兩枝一等品,從3支一等品中任取兩支,從二、三等品種任取一支利用分布乘法原理計算后除以基本事件總數(shù);(3)從5支非三等品中任取三支除以基本事件總數(shù).【題目詳解】(1)恰有一枝一等品的概率;(2)恰有兩枝一等品的概率;(3)沒有三等品的概率.【題目點撥】本題考查古典概型及其概率計算公式,考查邏輯思維能力和運算能力,屬于??碱}.19、(1)..(2),或.【解題分析】試題分析:(1)由三角函數(shù)圖象與軸交于點可得,則.由最小正周期公式可得.(2)由題意結合中點坐標公式可得點的坐標為.代入三角函數(shù)式可得,結合角的范圍求解三角方程可得,或.試題解析:(1)將代入函數(shù)中,得,因為,所以.由已知,且,得.(2)因為點是的中點,,所以點的坐標為.又因為點在的圖象上,且,所以,且,從而得,或,即,或.20、(1);(2).【解題分析】

(1)利用坐標運算表示出與;根據(jù)向量垂直可知數(shù)量積為零,從而構造方程求得結果;(2)利用坐標運算表示出,根據(jù)三點共線可知,根據(jù)向量共線的坐標表示可構造方程求得結果.【題目詳解】(1),與垂直,解得:(2)三點共線,,解得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論