2024屆吉林省長春市榆樹一中數(shù)學(xué)高一下期末經(jīng)典試題含解析_第1頁
2024屆吉林省長春市榆樹一中數(shù)學(xué)高一下期末經(jīng)典試題含解析_第2頁
2024屆吉林省長春市榆樹一中數(shù)學(xué)高一下期末經(jīng)典試題含解析_第3頁
2024屆吉林省長春市榆樹一中數(shù)學(xué)高一下期末經(jīng)典試題含解析_第4頁
2024屆吉林省長春市榆樹一中數(shù)學(xué)高一下期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆吉林省長春市榆樹一中數(shù)學(xué)高一下期末經(jīng)典試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.己知ΔABC中,角A,B,C所對的邊分別是a,b,c.若A=45°,B=30°,a=2,則bA.3-1 B.1 C.2 D.2.等比數(shù)列的各項均為正數(shù),且,則()A. B. C. D.3.若,則下列不等式成立的是A. B. C. D.4.下列函數(shù)中,在區(qū)間上為減函數(shù)的是A. B. C. D.5.在等差數(shù)列中,若,,則()A. B.1 C. D.6.如圖,平面ABCD⊥平面EDCF,且四邊形ABCD和四邊形EDCF都是正方形,則異面直線BD與CE所成的角為()A. B. C. D.7.某同學(xué)5天上學(xué)途中所花的時間(單位:分鐘)分別為12,8,10,9,11,則這組數(shù)據(jù)的方差為()A.4 B.2 C.9 D.38.已知函數(shù),若存在滿足,且,則n的最小值為()A.3 B.4 C.5 D.69.下列正確的是()A.若a,b∈R,則B.若x<0,則x+≥-2=-4C.若ab≠0,則D.若x<0,則2x+2-x>210.在中,若則等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)函數(shù)(是常數(shù),).若在區(qū)間上具有單調(diào)性,且,則的最小正周期為_________.12.如果函數(shù)的圖象關(guān)于直線對稱,那么該函數(shù)在上的最小值為_______________.13._____________.14.函數(shù)y=tan15.已知數(shù)列的通項公式,,前項和達(dá)到最大值時,的值為______.16.函數(shù)的單調(diào)遞減區(qū)間是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,為第二象限角.(1)求的值;(2)求的值.18.已知四棱錐的底面是菱形,底面,是上的任意一點(diǎn)求證:平面平面設(shè),求點(diǎn)到平面的距離在的條件下,若,求與平面所成角的正切值19.已知函數(shù).(1)求證:;(2)若角滿足,求銳角的取值范圍.20.已知函數(shù)當(dāng)時,求函數(shù)的最小值.21.某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:(1)求分?jǐn)?shù)在內(nèi)的頻率,并補(bǔ)全這個頻率分布直方圖;(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計本次考試的平均分;(3)用分層抽樣的方法在分?jǐn)?shù)段為的學(xué)生中抽取一個容量為的樣本,將該樣本看成一個總體,從中任取個,求至多有人在分?jǐn)?shù)段內(nèi)的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】

由正弦定理可得.【題目詳解】∵asinA=故選B.【題目點(diǎn)撥】本題考查正弦定理,解題時直接應(yīng)用正弦定理可解題,本題屬于基礎(chǔ)題.2、D【解題分析】

本題首先可根據(jù)數(shù)列是各項均為正數(shù)的等比數(shù)列以及計算出的值,然后根據(jù)對數(shù)的相關(guān)運(yùn)算以及等比中項的相關(guān)性質(zhì)即可得出結(jié)果.【題目詳解】因為等比數(shù)列的各項均為正數(shù),,所以,,所以,故選D.【題目點(diǎn)撥】本題考查對數(shù)的相關(guān)運(yùn)算以及等比中項的相關(guān)性質(zhì),考查的公式為以及在等比數(shù)列中有,考查計算能力,是簡單題.3、C【解題分析】

利用的單調(diào)性直接判斷即可?!绢}目詳解】因為在上遞增,又,所以成立。故選:C【題目點(diǎn)撥】本題主要考查了冪函數(shù)的單調(diào)性,屬于基礎(chǔ)題。4、D【解題分析】試題分析:在區(qū)間上為增函數(shù);在區(qū)間上先增后減;在區(qū)間上為增函數(shù);在區(qū)間上為減函數(shù),選D.考點(diǎn):函數(shù)增減性5、C【解題分析】

運(yùn)用等差數(shù)列的性質(zhì)求得公差d,再運(yùn)用通項公式解得首項即可.【題目詳解】由題意知,所以.故選C.【題目點(diǎn)撥】本題考查等差數(shù)列的通項公式的運(yùn)用,等差數(shù)列的性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.6、C【解題分析】

以D為原點(diǎn),DA為x軸,DC為y軸,DE為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線BD與CE所成的角.【題目詳解】∵平面ABCD⊥平面EDCF,且四邊形ABCD和四邊形EDCF都是正方形,∴以D為原點(diǎn),DA為x軸,DC為y軸,DE為z軸,建立空間直角坐標(biāo)系,設(shè)AB=1,則B(1,1,0),D(0,0,0),C(0,1,0),E(0,0,1),(﹣1,﹣1,0),(0,﹣1,1),設(shè)異面直線BD與CE所成的角為θ,則cosθ,∴θ.∴異面直線BD與CE所成的角為.故選:C.【點(diǎn)評】本題考查異面直線所成角的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.7、B【解題分析】

先求平均值,再結(jié)合方差公式求解即可.【題目詳解】解:由題意可得,由方差公式可得:,故選:B.【題目點(diǎn)撥】本題考查了樣本數(shù)據(jù)的方差,屬基礎(chǔ)題.8、D【解題分析】

根據(jù)正弦函數(shù)的性質(zhì),對任意(i,j=1,2,3,…,n),都有,因此要使得滿足條件的n最小,則盡量讓更多的取值對應(yīng)的點(diǎn)是最值點(diǎn),然后再對應(yīng)圖象取值.【題目詳解】,因為正弦函數(shù)對任意(i,j=1,2,3,…,n),都有,要使n取得最小值,盡可能多讓(i=1,2,3,…,n)取得最高點(diǎn),因為,所以要使得滿足條件的n最小,如圖所示則需取,,,,,,即取,,,,,,即.故選:D【題目點(diǎn)撥】本題主要考查正弦函數(shù)的圖象,還考查了數(shù)形結(jié)合的思想方法,屬于中檔題.9、D【解題分析】對于A,當(dāng)ab<0時不成立;對于B,若x<0,則x+=-≤-2=-4,當(dāng)且僅當(dāng)x=-2時,等號成立,因此B選項不成立;對于C,取a=-1,b=-2,+=-<a+b=-3,所以C選項不成立;對于D,若x<0,則2x+2-x>2成立.故選D.10、D【解題分析】

由正弦定理,求得,再由,且,即可求解,得到答案.【題目詳解】由題意,在中,由正弦定理可得,即,又由,且,所以或,故選D.【題目點(diǎn)撥】本題主要考查了正弦定理的應(yīng)用,其中解答中熟記三角形的正弦定理,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

由在區(qū)間上具有單調(diào)性,且知,函數(shù)的對稱中心為,由知函數(shù)的對稱軸為直線,設(shè)函數(shù)的最小正周期為,所以,,即,所以,解得,故答案為.考點(diǎn):函數(shù)的對稱性、周期性,屬于中檔題.12、【解題分析】

根據(jù)三角公式得輔助角公式,結(jié)合三角函數(shù)的對稱性求出值,再利用的取值范圍求出函數(shù)的最小值.【題目詳解】解:,令,則,則.因為函數(shù)的圖象關(guān)于直線對稱,所以,即,則,平方得.整理可得,則,所以函數(shù).因為,所以,當(dāng)時,即,函數(shù)有最小值為.故答案為:.【題目點(diǎn)撥】本題主要考查三角函數(shù)最值求解,結(jié)合輔助角公式和利用三角函數(shù)的對稱性建立方程是解決本題的關(guān)鍵.13、【解題分析】,故填.14、{【解題分析】

解方程12【題目詳解】由題得12x+故答案為{x|x≠2kπ+【題目點(diǎn)撥】本題主要考查正切型函數(shù)的定義域的求法,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.15、或【解題分析】

令,求出的取值范圍,即可得出達(dá)到最大值時對應(yīng)的值.【題目詳解】令,解得,因此,當(dāng)或時,前項和達(dá)到最大值.故答案為:或.【題目點(diǎn)撥】本題考查等差數(shù)列前項和最值的求解,可以利用關(guān)于的二次函數(shù),由二次函數(shù)的基本性質(zhì)求得,也可以利用等差數(shù)列所有非正項或非負(fù)項相加即得,考查計算能力,屬于基礎(chǔ)題.16、【解題分析】

求出函數(shù)的定義域,結(jié)合復(fù)合函數(shù)求單調(diào)性的方法求解即可.【題目詳解】由,解得令,則函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增函數(shù)在定義域內(nèi)單調(diào)遞增函數(shù)的單調(diào)遞減區(qū)間是故答案為:【題目點(diǎn)撥】本題主要考查了復(fù)合函數(shù)的單調(diào)性,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】

(1)根據(jù)同角三角函數(shù)平方關(guān)系即可求得結(jié)果;(2)利用同角三角函數(shù)商數(shù)關(guān)系可求得,代入兩角和差正切公式可求得結(jié)果.【題目詳解】(1)為第二象限角(2)由(1)知:【題目點(diǎn)撥】本題考查同角三角函數(shù)值的求解、兩角和差正切公式的應(yīng)用;易錯點(diǎn)是忽略角所處的范圍,造成三角函數(shù)值符號求解錯誤.18、(1)見解析(2)(3)【解題分析】

(1)由平面,得出,由菱形的性質(zhì)得出,利用直線與平面垂直的判定定理得出平面,再利用平面與平面垂直的判定定理可證出結(jié)論;(2)先計算出三棱錐的體積,并計算出的面積,利用等體積法計算出三棱錐的高,即為點(diǎn)到平面的距離;(3)由(1)平面,于此得知為直線與平面所成的角,由,得出平面,于此計算出,然后在中計算出即可.【題目詳解】(1)平面,平面,,四邊形是菱形,,平面;又平面,所以平面平面.(2)設(shè),連結(jié),則,四邊形是菱形,,,,設(shè)點(diǎn)到平面的距離為平面,,,解得,即點(diǎn)到平面的距離為;(3)由(1)得平面,為與平面所成角,平面,,與平面所成角的正切值為.【題目點(diǎn)撥】本題考查平面與平面垂直的證明、點(diǎn)到平面的距離以及直線與平面所成的角,求解點(diǎn)到平面的距離,常用的方法是等體積法,將問題轉(zhuǎn)化為三棱錐的高來計算,考查空間想象能力與推理能力,屬于中等題.19、(1)證明見解析;(2).【解題分析】

(1)根據(jù)函數(shù)的解析式化簡計算可得出;(2)由(1)得,由,可得,并推導(dǎo)出函數(shù)為上的增函數(shù),可得出,由為銳角可得出,由此可得出銳角的取值范圍.【題目詳解】(1),;(2)任取、,且,,,,,所以,函數(shù)是上的增函數(shù),由(1)知:即,由,得,又,即有,故有,即,為銳角,則,,的取值范圍是.【題目點(diǎn)撥】本題考查利用解析式化簡計算,同時也考查了利用函數(shù)的單調(diào)性解不等式,涉及三角不等式的求解,考查計算能力,屬于中等題.20、當(dāng)時,,當(dāng)時,,當(dāng)時,.【解題分析】

將函數(shù)的解析式化成二次函數(shù)的形式,然后把作為整體,并根據(jù)的取值范圍,結(jié)合求二次函數(shù)在閉區(qū)間上的最值的方法進(jìn)行求解即可.【題目詳解】由題意得.∵,∴.當(dāng),即時,則當(dāng),即時,函數(shù)取得最小值,且;當(dāng),即時,則當(dāng),即時,函數(shù)取得最小值,且;當(dāng),即時,則當(dāng),函數(shù)取得最小值,且.綜上可得.【題目點(diǎn)撥】解答本題的關(guān)鍵是將問題轉(zhuǎn)化為二次函數(shù)的問題求解,求二次函數(shù)在閉區(qū)間上的最值時要結(jié)合拋物線的開口方向和對稱軸與區(qū)間的位置關(guān)系求解,體現(xiàn)了數(shù)形結(jié)合的應(yīng)用,屬于基礎(chǔ)題.21、(1)0.3,直方圖見解析;(2)121;(3).【解題分析】

(1)頻率分布直方圖中,小矩形的面積等于這一組的頻率,而頻率的和等于1,可求出分?jǐn)?shù)在內(nèi)的頻率,即可求出矩形的高,畫出圖象即可;(2)同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,將中點(diǎn)值與每一組的頻率相差再求出它們的和即可求出本次考試的平均分;(3)先計算、分?jǐn)?shù)段的人數(shù),然后按照比例進(jìn)行抽取,設(shè)從樣本中任取2人,至多有1人在分?jǐn)?shù)段為事件,然后列出基本事件空間包含的基本事件,以及事件包含的基本事件,最后將包含事件的個數(shù)求出題目比值即可.【題目詳解】(1)分?jǐn)?shù)在[120,130)內(nèi)的頻率為:1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3,,補(bǔ)全后的直方圖如下:(2)平均分為:95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.(3)由題意,[110,120)分?jǐn)?shù)段的人數(shù)為:60×0.15=9人,[120,130)分?jǐn)?shù)段的人數(shù)為:60×0.3=18人.∵用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個容量為6的樣本,∴需在[110,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論