福建省閩侯市第六中學2024屆高一數(shù)學第二學期期末達標檢測模擬試題含解析_第1頁
福建省閩侯市第六中學2024屆高一數(shù)學第二學期期末達標檢測模擬試題含解析_第2頁
福建省閩侯市第六中學2024屆高一數(shù)學第二學期期末達標檢測模擬試題含解析_第3頁
福建省閩侯市第六中學2024屆高一數(shù)學第二學期期末達標檢測模擬試題含解析_第4頁
福建省閩侯市第六中學2024屆高一數(shù)學第二學期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

福建省閩侯市第六中學2024屆高一數(shù)學第二學期期末達標檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設等比數(shù)列的前項和為,若,公比,則的值為()A.15 B.16 C.30 D.312.設,且,則的最小值為()A. B. C. D.3.某校有高一學生人,高二學生人,高三學生人,現(xiàn)教育局督導組欲用分層抽樣的方法抽取名學生進行問卷調查,則下列判斷正確的是()A.高一學生被抽到的可能性最大 B.高二學生被抽到的可能性最大C.高三學生被抽到的可能性最大 D.每位學生被抽到的可能性相等4.已知點和點,是直線上的一點,則的最小值是()A. B. C. D.5.已知等比數(shù)列{an}的前n項和為Sn,若2Sn=an+1﹣1(n∈N*),則首項a1為()A.1 B.2 C.3 D.46.已知扇形的半徑為,面積為,則這個扇形圓心角的弧度數(shù)為()A. B. C.2 D.47.得到函數(shù)的圖象,只需將的圖象()A.向左移動 B.向右移動 C.向左移動 D.向右移動8.已知是圓上的三點,()A. B. C. D.9.如圖,三棱柱中,側棱底面ABC,,,,則異面直線與所成角的余弦值為()A. B. C. D.10.在空間中,可以確定一個平面的條件是()A.一條直線B.不共線的三個點C.任意的三個點D.兩條直線二、填空題:本大題共6小題,每小題5分,共30分。11.在賽季季后賽中,當一個球隊進行完場比賽被淘汰后,某個籃球愛好者對該隊的7場比賽得分情況進行統(tǒng)計,如表:場次得分104為了對這個隊的情況進行分析,此人設計計算的算法流程圖如圖所示(其中是這場比賽的平均得分),輸出的的值______.12.已知數(shù)列滿足,,,則數(shù)列的通項公式為________.13.過點直線與軸的正半軸,軸的正半軸分別交于、兩點,為坐標原點,當最小時,直線的一般方程為______.14.設,則函數(shù)是__________函數(shù)(奇偶性).15.若,,則___________.16.若等差數(shù)列的前項和,且,則______________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,,其中.(1)求的值;(2)求的值.18.已知點,,動點滿足,記M的軌跡為曲線C.(1)求曲線C的方程;(2)過坐標原點O的直線l交C于P、Q兩點,點P在第一象限,軸,垂足為H.連結QH并延長交C于點R.(i)設O到直線QH的距離為d.求d的取值范圍;(ii)求面積的最大值及此時直線l的方程.19.已知直線:及圓心為的圓:.(1)當時,求直線與圓相交所得弦長;(2)若直線與圓相切,求實數(shù)的值.20.如圖,平行四邊形中,是的中點,交于點.設,.(1)分別用,表示向量,;(2)若,,求.21.已知圓過點.(1)點,直線經(jīng)過點A且平行于直線,求直線的方程;(2)若圓心的縱坐標為2,求圓的方程.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

直接利用等比數(shù)列前n項和公式求.【題目詳解】由題得.故選A【題目點撥】本題主要考查等比數(shù)列求和,意在考查學生對該知識的理解掌握水平和分析推理能力.2、D【解題分析】

本題首先可將轉化為,然后將其化簡為,最后利用基本不等式即可得出結果.【題目詳解】,當且僅當,即時成立,故選D.【題目點撥】本題考查利用基本不等式求最值,基本不等式公式為,考查化歸與轉化思想,是簡單題.3、D【解題分析】

根據(jù)分層抽樣是等可能的選出正確答案.【題目詳解】由于分層抽樣是等可能的,所以每位學生被抽到的可能性相等,故選D.【題目點撥】本小題主要考查隨機抽樣的公平性,考查分層抽樣的知識,屬于基礎題.4、D【解題分析】

求出A關于直線l:的對稱點為C,則BC即為所求【題目詳解】如下圖所示:點,關于直線l:的對稱點為C(0,2),連接BC,此時的最小值為故選D.【題目點撥】本題考查的知識點是兩點間距離公式的應用,難度不大,屬于中檔題.5、A【解題分析】

等比數(shù)列的公比設為,分別令,結合等比數(shù)列的定義和通項公式,解方程可得所求首項.【題目詳解】等比數(shù)列的公比設為,由,令,可得,,兩式相減可得,即,又所以.故選:A.【題目點撥】本題考查數(shù)列的遞推式的運用,等比數(shù)列的定義和通項公式,考查方程思想和運算能力,屬于基礎題.6、D【解題分析】

利用扇形面積,結合題中數(shù)據(jù),建立關于圓心角的弧度數(shù)的方程,即可解得.【題目詳解】解:設扇形圓心角的弧度數(shù)為,因為扇形所在圓的半徑為,且該扇形的面積為,則扇形的面積為,解得:.故選:D.【題目點撥】本題在已知扇形面積和半徑的情況下,求扇形圓心角的弧度數(shù),著重考查了弧度制的定義和扇形面積公式等知識,屬于基礎題.7、B【解題分析】

直接利用三角函數(shù)圖象的平移變換法則,對選項中的變換逐一判斷即可.【題目詳解】函數(shù)的圖象,向左平移個單位,得,錯;函數(shù)的圖象,向右平移個單位,得,對.函數(shù)的圖象,向左平移個單位,得,錯;函數(shù)的圖象,向右平移個單位,得,錯,故選B.【題目點撥】本題考查了三角函數(shù)的圖象,重點考查學生對三角函數(shù)圖象變換規(guī)律的理解與掌握,能否正確處理先周期變換后相位變換這種情況下圖象的平移問題,反映學生對所學知識理解的深度.8、C【解題分析】

先由等式,得出,并計算出,以及與的夾角為,然后利用平面向量數(shù)量積的定義可計算出的值.【題目詳解】由于是圓上的三點,,則,,故選C.【題目點撥】本題考查平面向量的數(shù)量積的計算,解題的關鍵就是要確定向量的模和夾角,考查計算能力,屬于中等題.9、A【解題分析】

以為坐標原點,分別以所在直線為軸建立空間直角坐標系,由已知求與的坐標,由兩向量所成角的余弦值求解異面直線與所成角的余弦值.【題目詳解】如圖,以為坐標原點,分別以所在直線為軸建立空間直角坐標系,由已知得:,,所以,.設異面直線與所成角,則故異面直線與所成角的余弦值為.故選:A【題目點撥】本題主要考查了利用空間向量求解線線角的問題,屬于基礎題.10、B【解題分析】試題分析:根據(jù)平面的基本性質及推論,即確定平面的幾何條件,即可知道答案.解:對于A.過一條直線可以有無數(shù)個平面,故錯;對于C.過共線的三個點可以有無數(shù)個平面,故錯;對于D.過異面的兩條直線不能確定平面,故錯;由平面的基本性質及推論知B正確.故選B.考點:平面的基本性質及推論.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)題意,模擬程序框圖的運行過程,得出該程序運行的是求數(shù)據(jù)的標準差,即可求得答案.【題目詳解】模擬程序框圖的運行過程知,該程序運行的結果是求這個數(shù)據(jù)的標準差這組數(shù)據(jù)的平均數(shù)是方差是:標準差是故答案為:.【題目點撥】本題主要考查了根據(jù)程序框圖求輸出結果,解題關鍵是掌握程序框圖基礎知識和計算數(shù)據(jù)方差的解法,考查了分析能力和計算能力,屬于中檔題.12、.【解題分析】

由題意得出,可得出數(shù)列為等比數(shù)列,確定出該數(shù)列的首項和公比,可求出數(shù)列的通項公式,進而求出數(shù)列的通項公式.【題目詳解】設,整理得,對比可得,,即,且,所以,數(shù)列是以為首項,以為公比的等比數(shù)列,,因此,,故答案為.【題目點撥】本題考查數(shù)列通項的求解,解題時要結合遞推式的結構選擇合適的方法來求解,同時要注意等差數(shù)列和等比數(shù)列定義的應用,考查分析問題和解決問題的能力,屬于中等題.13、【解題分析】

設直線的截距式方程為,利用該直線過可得,再利用基本不等式可求何時即取最小值,從而得到相應的直線方程.【題目詳解】設直線的截距式方程為,其中且.因為直線過,故.所以,由基本不等式可知,當且僅當時等號成立,故當取最小值時,直線方程為:.填.【題目點撥】直線方程有五種形式,常用的形式有點斜式、斜截式、截距式、一般式,垂直于的軸的直線沒有點斜式、斜截式和截距式,垂直于軸的直線沒有截距式,注意根據(jù)題設所給的條件選擇合適的方程的形式,特別地,如果考慮的問題是與直線、坐標軸圍成的直角三角形有關的問題,可考慮利用截距式.14、偶【解題分析】

利用誘導公式將函數(shù)的解析式進行化簡,即可判斷出函數(shù)的奇偶性.【題目詳解】,因此,函數(shù)為偶函數(shù).故答案為:偶.【題目點撥】本題考查三角函數(shù)奇偶性的判斷,解題的關鍵就是利用誘導公式對三角函數(shù)解析式進行化簡,考查分析問題和解決問題的能力,屬于基礎題.15、【解題分析】

將等式和等式都平方,再將所得兩個等式相加,并利用兩角和的正弦公式可求出的值.【題目詳解】若,,將上述兩等式平方得,①,②,①+②可得,求得,故答案為.【題目點撥】本題考查利用兩角和的正弦公式求值,解題的關鍵就是將等式進行平方,結合等式結構進行變形計算,考查運算求解能力,屬于中等題.16、【解題分析】

設等差數(shù)列的公差為,根據(jù)題意建立和的方程組,解出這兩個量,即可求出的值.【題目詳解】設等差數(shù)列的公差為,由題意得,解得,因此,.故答案為:.【題目點撥】本題考查等差數(shù)列中項的計算,解題的關鍵就是要建立首項和公差的方程組,利用這兩個基本量來求解,考查運算求解能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】

(1)根據(jù)題意,由,求解,注意角的范圍,可求得值,再根據(jù)運用兩角和正切公式,即可求解;(2)由題意,配湊組合角,運用兩角差余弦公式,即可求解.【題目詳解】(1)∵,∴,∵,∴,∴,,(2)∵,∴,,∵,,∴,,∴.【題目點撥】本題考查三角恒等變換中的由弦求切、兩角和正切公式、兩角差余弦公式,考查配湊組合角,考查計算能力,屬于基礎題.18、(1);(2)(i)(ii)面積最大值為,直線的方程為.【解題分析】

(1)根據(jù)題意列出方程求解即可(2)聯(lián)立直線與圓的方程,得出P、Q、H三點坐標,表示出QH直線方程,采用點到直線距離公式求解;利用圓的幾何關系,表示出三角形的底和高,再結合函數(shù)最值問題進行求解【題目詳解】(1)由及兩點距離公式,有,化簡整理得,.所以曲線C的方程為;(2)(i)設直線l的方程為;將直線l的方程與圓C的方程聯(lián)立,消去y,得(,解得因此,,,所以直線QH的方程為.到直線QH的距離,當時.,所以,(ii)過O作于D,則D為QR中點,且由(i)知,,,又由,故的面積,由,有,所以,當且僅當時,等號成立,且此時由(i)有,即.綜上,的面積最大值為的面積最大值為,且當面積最大時直線的方程為.【題目點撥】直線與圓的綜合類題型常采用點到直線距離公式、圓內(nèi)構造的直角三角形,將代數(shù)問題與幾何問題進行有效結合,可大大降低解題難度.19、(1)弦長為4;(1)0【解題分析】

(1)由得到直線過圓的圓心,可求得弦長即為圓的直徑4;(1)由點到直線的距離等于半徑1,得到關于的方程,并求出.【題目詳解】(1)當時,直線:,圓:.圓心坐標為,半徑為1.圓心在直線上,則直線與圓相交所得弦長為4.(1)由直線與圓相切,則圓心到直線的距離等于半徑,所以,解得:.【題目點撥】本題考查直線與圓相交、相切兩種位置關系,求解時注意點到直線距離公式的應用,考查基本運算求解能力.20、(1),(2)2【解題分析】

(1)由平面的加法可得,又根據(jù)三角形相似得到,再根據(jù)向量的減法可得的不等式.

(2)由平面向量數(shù)量積運算得,然后再將條件代入可得答案.【題目詳解】(1).由∽,又所以,即(2)由,【題目點撥】本題考查了平面向量的線性運算及平面向量數(shù)量積運算,屬中檔題.21、(1);(2).【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論