版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆廣東省惠州市惠陽高級中學(xué)數(shù)學(xué)高一第二學(xué)期期末復(fù)習(xí)檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在等差數(shù)列中,若,且它的前項和有最大值,則使成立的正整數(shù)的最大值是()A.15 B.16 C.17 D.142.已知是兩條不同直線,是三個不同平面,下列命題中正確的是()A.若則 B.若則C.若則 D.若則3.已知且,則為()A. B. C. D.4.已知角的頂點為坐標(biāo)原點,始邊與軸的非負半軸重合,終邊上有兩點,,且,則A. B. C. D.5.設(shè)實數(shù)滿足約束條件,則的最大值為()A. B.9 C.11 D.6.四棱錐中,平面,底面是正方形,且,則直線與平面所成角為()A. B. C. D.7.設(shè)向量,且,則實數(shù)的值為()A. B. C. D.8.已知數(shù)列中,,,且,則的值為()A. B. C. D.9.某快遞公司在我市的三個門店,,分別位于一個三角形的三個頂點處,其中門店,與門店都相距,而門店位于門店的北偏東方向上,門店位于門店的北偏西方向上,則門店,間的距離為()A. B. C. D.10.對一切,恒成立,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.體積為8的一個正方體,其全面積與球的表面積相等,則球的體積等于________.12.若數(shù)列的前項和為,則該數(shù)列的通項公式為______.13.已知扇形的圓心角為,半徑為,則扇形的弧長為______.14.在正四面體中,棱與所成角大小為________.15.在平行六面體中,為與的交點,若存在實數(shù),使向量,則__________.16.已知數(shù)列滿足,若,則數(shù)列的通項______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.現(xiàn)有8名奧運會志愿者,其中志愿者通曉日語,通曉俄語,通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.(1)求被選中的概率;(2)求和不全被選中的概率.18.如圖,在三棱柱中,側(cè)棱垂直于底面,,分別是的中點.(1)求證:平面;(2)求三棱錐的體積.19.某校從參加高二年級期末考試的學(xué)生中抽出60名學(xué)生,并統(tǒng)計了他們的化學(xué)成績(成績均為整數(shù)且滿分為100分),把其中不低于50分的分成五段,,…,后畫出如圖部分頻率分布直方圖.觀察圖形的信息,回答下列問題:(1)求出這60名學(xué)生中化學(xué)成績低于50分的人數(shù);(2)估計高二年級這次考試化學(xué)學(xué)科及格率(60分以上為及格);(3)從化學(xué)成績不及格的學(xué)生中隨機調(diào)查1人,求他的成績低于50分的概率.20.某廠家擬在2020年舉行促銷活動,經(jīng)調(diào)查測算,某產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費用萬元,滿足(為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件,已知2020年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件,該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).(1)將2020年該產(chǎn)品的利潤(萬元)表示為年促銷費用(萬元)的函數(shù);(2)該廠家2020年的促銷費用投入多少萬元時,廠家的利潤最大?21.在我國古代數(shù)學(xué)名著《九章算術(shù)》中將由四個直角三角形組成的四面體稱為“鱉臑”.已知三棱維P-ABC中,PA⊥底面ABC.(1)從三棱錐P-ABC中選擇合適的兩條棱填空_________⊥________,則該三棱錐為“鱉臑”;(2)如圖,已知AD⊥PB垂足為D,AE⊥PC,垂足為E,∠ABC=90°.(i)證明:平面ADE⊥平面PAC;(ii)作出平面ADE與平面ABC的交線l,并證明∠EAC是二面角E-l-C的平面角.(在圖中體現(xiàn)作圖過程不必寫出畫法)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
由題意可得,,且,由等差數(shù)列的性質(zhì)和求和公式可得結(jié)論.【題目詳解】∵等差數(shù)列的前項和有最大值,∴等差數(shù)列為遞減數(shù)列,又,∴,,∴,又,,∴成立的正整數(shù)的最大值是17,故選C.【題目點撥】本題考查等差數(shù)列的性質(zhì),涉及等差數(shù)列的求和公式,屬中檔題.2、D【解題分析】
A項,可能相交或異面,當(dāng)時,存在,,故A項錯誤;B項,可能相交或垂直,當(dāng)
時,存在,,故B項錯誤;C項,可能相交或垂直,當(dāng)
時,存在,,故C項錯誤;D項,垂直于同一平面的兩條直線相互平行,故D項正確,故選D.本題主要考查的是對線,面關(guān)系的理解以及對空間的想象能力.考點:直線與平面、平面與平面平行的判定與性質(zhì);直線與平面、平面與平面垂直的判定與性質(zhì).3、B【解題分析】由題意得,因為,即,所以,又,又,且,所以,故選B.4、B【解題分析】
首先根據(jù)兩點都在角的終邊上,得到,利用,利用倍角公式以及余弦函數(shù)的定義式,求得,從而得到,再結(jié)合,從而得到,從而確定選項.【題目詳解】由三點共線,從而得到,因為,解得,即,所以,故選B.【題目點撥】該題考查的是有關(guān)角的終邊上點的縱坐標(biāo)的差值的問題,涉及到的知識點有共線的點的坐標(biāo)的關(guān)系,余弦的倍角公式,余弦函數(shù)的定義式,根據(jù)題中的條件,得到相應(yīng)的等量關(guān)系式,從而求得結(jié)果.5、C【解題分析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【題目詳解】作出約束條件表示的可行域如圖,化目標(biāo)函數(shù)為,聯(lián)立,解得,由圖可知,當(dāng)直線過點時,z取得最大值11,故選:C.【題目點撥】本題主要考查線性規(guī)劃中,利用可行域求目標(biāo)函數(shù)的最值,屬于簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.6、A【解題分析】
連接交于點,連接,證明平面,進而可得到即是直線與平面所成角,根據(jù)題中數(shù)據(jù)即可求出結(jié)果.【題目詳解】連接交于點,因為平面,底面是正方形,所以,,因此平面;故平面;連接,則即是直線與平面所成角,又因,所以,.所以,所以.故選A【題目點撥】本題主要考查線面角的求法,在幾何體中作出線面角,即可求解,屬于??碱}型.7、D【解題分析】
根據(jù)向量垂直時數(shù)量積為0,列方程求出m的值.【題目詳解】向量,(m+1,﹣m),當(dāng)⊥時,?0,即﹣(m+1)﹣2m=0,解得m.故選D.【題目點撥】本題考查了平面向量的數(shù)量積的坐標(biāo)運算,考查了向量垂直的條件轉(zhuǎn)化,是基礎(chǔ)題.8、A【解題分析】
由遞推關(guān)系,結(jié)合,,可求得,,的值,可得數(shù)列是一個周期為6的周期數(shù)列,進而可求的值?!绢}目詳解】因為,由,,得;由,,得;由,,得;由,,得;由,,得;由,,得由此推理可得數(shù)列是一個周期為6的周期數(shù)列,所以,故選A?!绢}目點撥】本題考查由遞推關(guān)系求數(shù)列中的項,考查數(shù)列周期的判斷,屬基礎(chǔ)題。9、C【解題分析】
根據(jù)題意,作出圖形,結(jié)合圖形利用正弦定理,即可求解,得到答案.【題目詳解】如圖所示,依題意知,,,由正弦定理得:,則.故選C.【題目點撥】本題主要考查了三角形的實際應(yīng)用問題,其中解答中根據(jù)題意作出圖形,合理使用正弦定理求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.10、B【解題分析】
先求得的取值范圍,根據(jù)恒成立問題的求解策略,將原不等式轉(zhuǎn)化為,再解一元二次不等式求得的取值范圍.【題目詳解】解:對一切,恒成立,轉(zhuǎn)化為:的最大值,又知,的最大值為;所以,解得或.故選B.【題目點撥】本小題主要考查恒成立問題的求解策略,考查三角函數(shù)求最值的方法,考查一元二次不等式的解法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
由體積為的一個正方體,棱長為,全面積為,則,,球的體積為,故答案為.考點:正方體與球的表面積及體積的算法.12、【解題分析】
由,可得出,再令,可計算出,然后檢驗是否滿足在時的表達式,由此可得出數(shù)列的通項公式.【題目詳解】由題意可知,當(dāng)時,;當(dāng)時,.又不滿足.因此,.故答案為:.【題目點撥】本題考查利用求,一般利用來計算,但要對是否滿足進行檢驗,考查運算求解能力,屬于中等題.13、9【解題分析】
由扇形的弧長公式運算可得解.【題目詳解】解:由扇形的弧長公式得:,故答案為9.【題目點撥】本題考查了扇形的弧長,屬基礎(chǔ)題.14、【解題分析】
根據(jù)正四面體的結(jié)構(gòu)特征,取中點,連,,利用線面垂直的判定證得平面,進而得到,即可得到答案.【題目詳解】如圖所示,取中點,連,,正四面體是四個全等正三角形圍成的空間封閉圖形,所有棱長都相等,所以,,且,所以平面,又由平面,所以,所以棱與所成角為.【題目點撥】本題主要考查了異面直線所成角的求解,以及直線與平面垂直的判定及應(yīng)用,著重考查了推理與論證能力,屬于基礎(chǔ)題.15、【解題分析】
在平行六面體中把向量用用表示,再利用待定系數(shù)法,求得.再求解?!绢}目詳解】如圖所示:因為,又因為,所以,所以.故答案為:【題目點撥】本題主要考查了空間向量的基本定理,還考查了運算求解的能力,屬于基礎(chǔ)題.16、【解題分析】
直接利用數(shù)列的遞推關(guān)系式和疊加法求出結(jié)果.【題目詳解】因為,所以當(dāng)時,.時也成立.所以數(shù)列的通項.【題目點撥】本題考查的知識要點:數(shù)列的通項公式的求法及應(yīng)用,疊加法在數(shù)列中的應(yīng)用,主要考察學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】
(1)從8人中選出日語、俄語和韓語志愿者各1名,其一切可能的結(jié)果組成的基本事件空間{,,,,,,,,}由18個基本事件組成.由于每一個基本事件被抽取的機會均等,因此這些基本事件的發(fā)生是等可能的.用表示“恰被選中”這一事件,則{,}事件由6個基本事件組成,因而.(2)用表示“不全被選中”這一事件,則其對立事件表示“全被選中”這一事件,由于{},事件有3個基本事件組成,所以,由對立事件的概率公式得.18、(1)證明見解析(2)【解題分析】試題分析:(1)做輔助線,先證及四邊形為平行四邊形平面;(2)利用勾股定理求得.試題解析:(1)證明:取中點,連接,則∵是的中點,∴;∵是的中點,∴,∴四邊形為平行四邊形,∴,∵平面,平面,∴平面;(2)∵,∴,∴19、(1)6人;(2)75%;(3).【解題分析】試題分析:(1)由頻率分布直方圖可得化學(xué)成績低于50分的頻率為0.1,然后可求得人數(shù)為人;(2)根據(jù)頻率分布直方圖求分數(shù)在第三、四、五、六組的頻率之和即可;(3)結(jié)合圖形可得“成績低于50分”的人數(shù)是6人,成績在這組的人數(shù)是,由古典概型概率公式可得所求概率為。試題解析:(1)因為各組的頻率和等于1,由頻率分布直方圖可得低于50分的頻率為:,所以低于分的人數(shù)為(人).(2)依題意可得成績60及以上的分數(shù)所在的第三、四、五、六組(低于50分的為第一組),其頻率之和為,故抽樣學(xué)生成績的及格率是,于是,可以估計這次考試化學(xué)學(xué)科及格率約為75%.(3)由(1)知,“成績低于50分”的人數(shù)是6人,成績在這組的人數(shù)是(人),所以從成績不及格的學(xué)生中隨機調(diào)查1人,有15種選法,成績低于50分有6種選法,故所求概率為.20、(1);(2)廠家2020年的促銷費用投入3萬元時,廠家的利潤最大,為21萬元.【解題分析】
(1)由不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件,可求k的值,再求出每件產(chǎn)品銷售價格的代數(shù)式,則利潤(萬元)表示為年促銷費用(萬元)的函數(shù)可求.(2)由(1)得,再根據(jù)均值不等式可解.注意取等號.【題目詳解】(1)由題意知,當(dāng)時,所以,每件產(chǎn)品的銷售價格為元.所以2020年的利潤;(2)由(1)知,,當(dāng)且僅當(dāng),即時取等號,該廠家2020年的促銷費用投入3萬元時,廠家的利潤最大,為21萬元.【題目點撥】考查均值不等式的應(yīng)用以及給定值求函數(shù)的參數(shù)及解析式.題目較易,考查的均值不等式,要注意取等號.21、(1)BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC.(2)(i)見證明;(ii)見解析【解題分析】
(1)根據(jù)已知填BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC均可;(2)(i)先證明PC⊥平面ADE,再證明平面ADE⊥平面PAC;(ii)在平面PBC中,記DE∩BC,=F,連結(jié)AF,則AF為所求的l.再證明∠EAC是二面角E-l-C的平面角.【題目詳解】(1)BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC.(2)(i)在三棱錐P-ABC中,BC⊥AB,BC⊥PA,BC∩PA=A,所以BC⊥平面PAB,又AD?平面PAB,所以BC⊥AD,又AD⊥PB,P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東科貿(mào)職業(yè)學(xué)院《制藥過程自動化與儀表》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東酒店管理職業(yè)技術(shù)學(xué)院《非線性編輯Ⅱ》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東交通職業(yè)技術(shù)學(xué)院《礦資專業(yè)英語》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東技術(shù)師范大學(xué)《現(xiàn)代軟件工程技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東工商職業(yè)技術(shù)大學(xué)《數(shù)學(xué)文化與數(shù)學(xué)思維》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東潮州衛(wèi)生健康職業(yè)學(xué)院《社會工作前沿問題研究》2023-2024學(xué)年第一學(xué)期期末試卷
- 《趙司長發(fā)言多媒體》課件
- 廣東碧桂園職業(yè)學(xué)院《外國文學(xué)作品選講》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛南師范大學(xué)《材料專業(yè)基礎(chǔ)實驗(1)》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛州師范高等??茖W(xué)校《微生物遺傳育種實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 陜西省教育科學(xué)規(guī)劃課題開題報告
- GB/T 37375-2019交通運輸物聯(lián)網(wǎng)標(biāo)識規(guī)則
- 三大構(gòu)成之立體構(gòu)成-課件
- 河南高職單招政策解讀與報名課件
- 體外培育牛黃技術(shù)幻燈3課件
- 護士N2晉級N3職稱評定述職報告PPT課件(帶內(nèi)容)
- 動物、礦物藥分析課件
- 2019-2020學(xué)年江蘇省徐州市九年級(上)期末數(shù)學(xué)試卷(常用)(精品)
- 精選天津高三生物知識點
- 心有靈犀猜詞游戲常備詞匯總結(jié)
- DB22∕T 5006-2018 裝配式路面基層工程技術(shù)標(biāo)準
評論
0/150
提交評論