版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆內(nèi)蒙古呼市二中高一數(shù)學第二學期期末考試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.半徑為,中心角為的弧長為()A. B. C. D.2.如圖所示,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AB,AD的中點,則異面直線B1C與EF所成的角的大小為()A.30° B.45° C.60° D.90°3.在某次測量中得到樣本數(shù)據(jù)如下:,若樣本數(shù)據(jù)恰好是樣本每個數(shù)都增加得到,則、兩樣本的下列數(shù)字特征對應相同的是()A.眾數(shù) B.中位數(shù) C.方差 D.平均數(shù)4.光線自點M(2,3)射到N(1,0)后被x軸反射,則反射光線所在的直線方程為()A. B.C. D.5.直線的傾斜角為()A. B. C. D.6.已知全集,集合,,則()A. B.C. D.7.對任意實數(shù)x,表示不超過x的最大整數(shù),如,,關(guān)于函數(shù),有下列命題:①是周期函數(shù);②是偶函數(shù);③函數(shù)的值域為;④函數(shù)在區(qū)間內(nèi)有兩個不同的零點,其中正確的命題為()A.①③ B.②④ C.①②③ D.①②④8.設(shè)等差數(shù)列,則等于()A.120 B.60 C.54 D.1089.已知、是平面上兩個不共線的向量,則下列關(guān)系式:①;②;③;④.正確的個數(shù)是()A.4 B.3 C.2 D.110.(2016高考新課標III,理3)已知向量,則ABC=A.30 B.45 C.60 D.120二、填空題:本大題共6小題,每小題5分,共30分。11.已知正方形,向正方形內(nèi)任投一點,則的面積大于正方形面積四分之一的概率是______.12.若數(shù)列的前項和為,則該數(shù)列的通項公式為______.13.已知向量,則________14.實數(shù)2和8的等比中項是__________.15.已知,則16.在直角坐標系xOy中,一單位圓的圓心的初始位置在,此時圓上一點P的位置在,圓在x軸上沿正向滾動.當圓滾動到圓心位于時,的坐標為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設(shè)Sn為數(shù)列{an}的前n項和,已知a1=3,Sn=1Sn﹣1+n(n≥1)(1)求出a1,a3的值,并證明:數(shù)列{an+1}為等比數(shù)列;(1)設(shè)bn=log1(a3n+1),數(shù)列{}的前n項和為Tn,求證:1≤18Tn<1.18.已知cosα=,sin(α-β)=,且α,β∈(0,).求:(1)cos(α-β)的值;(2)β的值.19.已知向量且,(1)求向量與的夾角;(2)求的值.20.已知、、是銳角中、、的對邊,是的面積,若,,.(1)求;(2)求邊長的長度.21.如圖,四棱錐,平面ABCD,四邊形ABCD是直角梯形,,,,E為PB中點.(1)求證:平面PCD;(2)求證:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】
根據(jù)弧長公式,即可求得結(jié)果.【題目詳解】,.故選D.【題目點撥】本題考查了弧長公式,屬于基礎(chǔ)題型.2、C【解題分析】連接,由三角形中位線定理及平行四邊形性質(zhì)可得,所以是與所成角,由正方體的性質(zhì)可知是等邊三角形,所以,與所成角是,故選C.3、C【解題分析】
分別計算出、兩個樣本數(shù)據(jù)的眾數(shù)、中位數(shù)、方差和平均數(shù),再進行判斷?!绢}目詳解】樣本的數(shù)據(jù)為:、、、、,沒有眾數(shù),中位數(shù)為,平均數(shù)為,方差為,樣本的數(shù)據(jù)為:、、、、,沒有眾數(shù),中位數(shù)為,平均數(shù)為,方差為,因此,兩個樣本數(shù)據(jù)的方差沒變,故選:D?!绢}目點撥】本題考查樣本的數(shù)據(jù)特征,考查對樣本數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù)以及方差概念的理解,熟練利用相關(guān)公式計算這些數(shù)據(jù),是解本題的關(guān)鍵,屬于中等題。4、B【解題分析】試題分析:點關(guān)于軸的對稱點,則反射光線即在直線上,由,∴,故選B.考點:直線方程的幾種形式.5、C【解題分析】
由直線方程求出直線的斜率,即得傾斜角的正切值,從而求出傾斜角.【題目詳解】設(shè)直線的傾斜角為,由,得:,故中直線的斜率,∵,∴;故選C.【題目點撥】本題考查了直線的傾斜角與斜率的問題,是基礎(chǔ)題.6、A【解題分析】
本題根據(jù)交集、補集的定義可得.容易題,注重了基礎(chǔ)知識、基本計算能力的考查.【題目詳解】,則【題目點撥】易于理解集補集的概念、交集概念有誤.7、A【解題分析】
根據(jù)的表達式,結(jié)合函數(shù)的周期性,奇偶性和值域分別進行判斷即可得到結(jié)論.【題目詳解】是周期函數(shù),3是它的一個周期,故①正確.,結(jié)合函數(shù)的周期性可得函數(shù)的值域為,則函數(shù)不是偶函數(shù),故②錯誤.,故在區(qū)間內(nèi)有3個不同的零點,故④錯誤.故選:A【題目點撥】本題考查了取整函數(shù)綜合問題,考查了學習綜合分析,轉(zhuǎn)化與劃歸,數(shù)學運算的能力,屬于難題.8、C【解題分析】
題干中只有一個等式,要求前9項的和,可利用等差數(shù)列的性質(zhì)解決。【題目詳解】,選C.【題目點撥】題干中只有一個等式,要求前9項的和,可利用等差數(shù)列的性質(zhì)解決。也可將等式全部化為的表達式,整體代換計算出9、C【解題分析】
根據(jù)數(shù)量積的運算性質(zhì)對選項進行逐一判斷,即可得到答案.【題目詳解】①.,滿足交換律,正確.②.,滿足分配律,正確.③.,所以不正確.④.,
,可正可負可為0,所以④不正確.故選:C【題目點撥】本題考查向量數(shù)量積的運算性質(zhì),屬于中檔題10、A【解題分析】試題分析:由題意,得,所以,故選A.【考點】向量的夾角公式.【思維拓展】(1)平面向量與的數(shù)量積為,其中是與的夾角,要注意夾角的定義和它的取值范圍:;(2)由向量的數(shù)量積的性質(zhì)知,,,因此,利用平面向量的數(shù)量積可以解決與長度、角度、垂直等有關(guān)的問題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
向正方形內(nèi)任投一點,所有等可能基本事件構(gòu)成正方形區(qū)域,當?shù)拿娣e大于正方形面積四分之一的所有基本事件構(gòu)成區(qū)域矩形區(qū)域,由面積比可得概率值.【題目詳解】如圖邊長為1的正方形中,分別是的中點,當點在線段上時,的面積為,所以的面積大于正方形面積四分之一,此時點應在矩形內(nèi),由幾何概型得:,故填.【題目點撥】本題考查幾何概型,利用面積比求概率值,考查對幾何概型概率計算.12、【解題分析】
由,可得出,再令,可計算出,然后檢驗是否滿足在時的表達式,由此可得出數(shù)列的通項公式.【題目詳解】由題意可知,當時,;當時,.又不滿足.因此,.故答案為:.【題目點撥】本題考查利用求,一般利用來計算,但要對是否滿足進行檢驗,考查運算求解能力,屬于中等題.13、2【解題分析】
由向量的模長公式,計算得到答案.【題目詳解】因為向量,所以,所以答案為.【題目點撥】本題考查向量的模長公式,屬于簡單題.14、【解題分析】所求的等比中項為:.15、28【解題分析】試題分析:由等差數(shù)列的前n項和公式,把等價轉(zhuǎn)化為所以,然后求得a值.考點:極限及其運算16、【解題分析】
設(shè)滾動后圓的圓心為C,切點為A,連接CP.過C作與x軸正方向平行的射線,交圓C于B(2,1),設(shè)∠BCP=θ,則根據(jù)圓的參數(shù)方程,得P的坐標為(1+cosθ,1+sinθ),再根據(jù)圓的圓心從(0,1)滾動到(1,1),算出,結(jié)合三角函數(shù)的誘導公式,化簡可得P的坐標為,即為向量的坐標.【題目詳解】設(shè)滾動后的圓的圓心為C,切點為,連接CP,過C作與x軸正方向平行的射線,交圓C于,設(shè),∵C的方程為,∴根據(jù)圓的參數(shù)方程,得P的坐標為,∵單位圓的圓心的初始位置在,圓滾動到圓心位于,,可得,可得,,代入上面所得的式子,得到P的坐標為,所以的坐標是.故答案為:.【題目點撥】本題考查圓的參數(shù)方程,平面向量坐標表示的應用,解題的關(guān)鍵是根據(jù)數(shù)形結(jié)合找到變量的角度,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(1)見解析【解題分析】
(1)可令求得的值;再由數(shù)列的遞推式,作差可得,可得數(shù)列為首項為1,公比為1的等比數(shù)列;(1)由(1)求得,,再由數(shù)列的裂項相消求和,可得,再由不等式的性質(zhì)即可得證.【題目詳解】(1)當時,,即,∴,當時,,即,∴,∵,∴,,∴,∴,又∵,,∴,∴,∴數(shù)列是首項為,公比為1的等比數(shù)列.(1)由(1)可知,所以,所以,,,,所以,所以,即.【題目點撥】本題主要考查了數(shù)列的遞推式的運用,考查等比數(shù)列的定義和通項公式、求和公式的運用,考查數(shù)列的裂項相消求和,化簡運算能力,屬于中檔題.18、(1)【解題分析】
(1)利用同角的平方關(guān)系求cos(α-β)的值;(2)利用求出,再求的值.【題目詳解】(1)因為,所以cos(α-β).(2)因為cosα=,所以,所以,因為β∈(0,),所以.【題目點撥】本題主要考查同角的三角函數(shù)的關(guān)系求值,考查差角的余弦,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.19、(Ⅰ)(Ⅱ)【解題分析】
(Ⅰ)利用平面向量的數(shù)量積的運算法則化簡,進而求出向量與的夾角;(Ⅱ)利用,對其化簡,代入數(shù)值,即可求出結(jié)果.【題目詳解】解:(Ⅰ)由得因向量與的夾角為(Ⅱ)【題目點撥】本題考查平面向量的數(shù)量積的應用,以及平面向量的夾角以及平面向量的模的求法,考查計算能力.20、(1);(2).【解題分析】
(1)利用三角形的面積公式結(jié)合為銳角可求出的值;(2)利用余弦定理可求出邊長的長度.【題目詳解】(1)由三角形的面積公式可得,得.為銳角,因此,;(2)由余弦定理得,因此,.【題目點撥】本題考查利用三角形的面積公式求角,同時也考查了利用余弦定理求三角形的邊長,考查計算能力,屬于基礎(chǔ)題.21、(1)證明見詳解;(2)證明見詳解【解題分析】
(1)取的中點,證
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版民間借貸擔保合同簽訂技巧與法律風險規(guī)避4篇
- 2025版15%股權(quán)轉(zhuǎn)讓與市場拓展及銷售分成合同3篇
- 2025年度新能源項目投資出資人轉(zhuǎn)讓協(xié)議書范本4篇
- 2025版危險品運輸車輛監(jiān)控與維護協(xié)議3篇
- 2025年高端商務(wù)車輛融資租賃專項合同4篇
- 2025年鐵藝欄桿生產(chǎn)、安裝、維護及保養(yǎng)服務(wù)協(xié)議3篇
- 科技助力下的學生自我管理能力提升
- 2025年度戶外運動服裝采購與銷售合同范本4篇
- 家庭教育心理輔導在遠程教育中的應用
- 生態(tài)教育實踐中的跨學科合作與交流
- 2014新PEP小學英語六年級上冊-Unit5-What-does-he-do復習課件
- 9.2溶解度(第1課時飽和溶液不飽和溶液)+教學設(shè)計-2024-2025學年九年級化學人教版(2024)下冊
- 礦山隱蔽致災普查治理報告
- 副總經(jīng)理招聘面試題與參考回答(某大型國企)2024年
- PDCA循環(huán)提高護士培訓率
- 《獅子王》電影賞析
- 河北省保定市定州市2025屆高二數(shù)學第一學期期末監(jiān)測試題含解析
- 中醫(yī)護理人文
- 2024-2030年中國路亞用品市場銷售模式與競爭前景分析報告
- 貨物運輸安全培訓課件
- 前端年終述職報告
評論
0/150
提交評論