2024屆4月山東省莒縣數(shù)學九上期末質量檢測試題含解析_第1頁
2024屆4月山東省莒縣數(shù)學九上期末質量檢測試題含解析_第2頁
2024屆4月山東省莒縣數(shù)學九上期末質量檢測試題含解析_第3頁
2024屆4月山東省莒縣數(shù)學九上期末質量檢測試題含解析_第4頁
2024屆4月山東省莒縣數(shù)學九上期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆4月山東省莒縣數(shù)學九上期末質量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,已知一組平行線a∥b∥c,被直線m、n所截,交點分別為A、B、C和D、E、F,且AB=1.5,BC=2,DE=1.8,則EF=()A.4.4 B.4 C.3.4 D.2.42.在平面直角坐標系xOy中,以點(-3,4)為圓心,4為半徑的圓()A.與x軸相交,與y軸相切 B.與x軸相離,與y軸相交C.與x軸相切,與y軸相交 D.與x軸相切,與y軸相離3.順次連接四邊形ABCD各邊的中點,所得四邊形是()A.平行四邊形B.對角線互相垂直的四邊形C.矩形D.菱形4.下列方程是一元二次方程的是()A. B.x2=0 C.x2-2y=1 D.5.在中,,,,則直角邊的長是()A. B. C. D.6.在學校組織的實踐活動中,小新同學用紙板制作了一個圓錐模型,它的底面半徑為1,母線長為1.則這個圓錐的側面積是()A.4π B.1π C.π D.2π7.如果某人沿坡度為的斜坡前進10m,那么他所在的位置比原來的位置升高了()A.6m B.8m C.10m D.12m8.如圖,已知△ABC與△DEF位似,位似中心為點O,且△ABC的面積等于△DEF面積的,則AO:AD的值為()A.2:3 B.2:5 C.4:9 D.4:139.若方程(m﹣1)x2﹣4x=0是關于x的一元二次方程,則m的取值范圍是()A.m≠1 B.m=1 C.m≠0 D.m≥110.反比例函數(shù)y=的圖象位于()A.第一、三象限 B.第二、三象限C.第一、二象限 D.第二、四象限二、填空題(每小題3分,共24分)11.一元二次方程(x﹣1)2=1的解是_____.12.已知,P為等邊三角形ABC內(nèi)一點,PA=3,PB=4,PC=5,則S△ABC=_____.13.已知m,n是方程的兩個實數(shù)根,則.14.有五張分別印有等邊三角形、正方形、正五邊形、矩形、正六邊形圖案的卡片(這些卡片除圖案不同外,其余均相同).現(xiàn)將有圖案的一面朝下任意擺放,從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為_____.15.張老師在講解復習《圓》的內(nèi)容時,用投影儀屏幕展示出如下內(nèi)容:如圖,內(nèi)接于,直徑的長為2,過點的切線交的延長線于點.張老師讓同學們添加條件后,編制一道題目,并按要求完成下列填空.(1)在屏幕內(nèi)容中添加條件,則的長為______.(2)以下是小明、小聰?shù)膶υ挘盒∶鳎何壹拥臈l件是,就可以求出的長小聰:你這樣太簡單了,我加的是,連結,就可以證明與全等.參考上面對話,在屏幕內(nèi)容中添加條件,編制一道題目(此題目不解答,可以添線、添字母).______.16.方程的解是_____.17.如圖,D、E分別是△ABC的邊AB、AC上的點,連接DE,要使△ADE∽△ACB,還需添加一個條件(只需寫一個).18.如圖,將繞著點順時針旋轉后得到,若,,則的度數(shù)是__________.三、解答題(共66分)19.(10分)解方程:.20.(6分)為了解學生的藝術特長發(fā)展情況,某校決定圍繞“在舞蹈、樂器、聲樂、戲曲、其它活動項目中,你最喜歡哪一項活動(每人只限一項)”的問題,在全校范圍內(nèi)隨機抽取部分學生進行問卷調查,并將調查結果繪制成如下兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖解答下列問題:(1)扇形統(tǒng)計圖中“戲曲”部分對應的扇形的圓心角為度;(2)若在“舞蹈、樂器、聲樂、戲曲”項目中任選兩項成立課外興趣小組,請用列舉法求恰好選中“舞蹈、聲樂”這兩項的概率.21.(6分)有一個直徑為1m的圓形鐵皮,要從中剪出一個最大的圓心角為90°的扇形ABC,如圖所示.(1)求被剪掉陰影部分的面積:(2)用所留的扇形鐵皮圍成一個圓錐,該圓錐的底面圓的半徑是多少?22.(8分)如圖,拋物線與軸交于、兩點,與軸交于點,且.(1)求拋物線的解析式及頂點的坐標;(2)判斷的形狀,證明你的結論;(3)點是拋物線對稱軸上的一個動點,當周長最小時,求點的坐標及的最小周長.23.(8分)如圖,拋物線過原點,且與軸交于點.(1)求拋物線的解析式及頂點的坐標;(2)已知為拋物線上一點,連接,,,求的值;(3)在第一象限的拋物線上是否存在一點,過點作軸于點,使以,,三點為頂點的三角形與相似,若存在,求出滿足條件的點的坐標;若不存在,請說明理由.24.(8分)如圖,已知直線l切⊙O于點A,B為⊙O上一點,過點B作BC⊥l,垂足為點C,連接AB、OB.(1)求證:∠ABC=∠ABO;(2)若AB=,AC=1,求⊙O的半徑.25.(10分)已知二次函數(shù)的圖象經(jīng)過點.(1)求這個函數(shù)的解析式;(2)畫出它的簡圖,并指出圖象的頂點坐標;(3)結合圖象直接寫出使的的取值范圍.26.(10分)已知拋物線C1:y1=a(x﹣h)2+2,直線1:y2=kx﹣kh+2(k≠0).(1)求證:直線l恒過拋物線C的頂點;(2)若a>0,h=1,當t≤x≤t+3時,二次函數(shù)y1=a(x﹣h)2+2的最小值為2,求t的取值范圍.(3)點P為拋物線的頂點,Q為拋物線與直線l的另一個交點,當1≤k≤3時,若線段PQ(不含端點P,Q)上至少存在一個橫坐標為整數(shù)的點,求a的取值范圍.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】直接利用平行線分線段成比例定理對各選項進行判斷即可.【詳解】解:∵a∥b∥c,

∴,∵AB=1.5,BC=2,DE=1.8,∴,∴EF=2.4

故選:D.【點睛】本題考查了平行線分線段成比例,掌握三條平行線截兩條直線,所得的對應線段成比例是關鍵.2、C【解析】分析:首先畫出圖形,根據(jù)點的坐標得到圓心到X軸的距離是4,到Y軸的距離是3,根據(jù)直線與圓的位置關系即可求出答案.解答:解:圓心到X軸的距離是4,到y(tǒng)軸的距離是3,4=4,3<4,∴圓與x軸相切,與y軸相交,故選C.3、A【解析】試題分析:連接原四邊形的一條對角線,根據(jù)中位線定理,可得新四邊形的一組對邊平行且等于對角線的一半,即一組對邊平行且相等.則新四邊形是平行四邊形.解:如圖,根據(jù)中位線定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD,∴EH=FG,EH∥FG,∴四邊形EFGH是平行四邊形.故選A.考點:中點四邊形.4、B【解析】利用一元二次方程的定義:只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程,可求解.【詳解】解:A:,化簡后是:,不符合一元二次方程的定義,所以不是一元二次方程;

B:x2=0,是一元二次方程;

C:x2-2y=1含有兩個未知數(shù),不符合一元二次方程的定義,所以不是一元二次方程;

D:,分母含有未知數(shù),是一元一次方程,所以不是一元二次方程;

故選:B.【點睛】本題考查了一元二次方程的定義,判斷一個方程是否是一元二次方程應注意抓住5個方面:“化簡后”;“一個未知數(shù)”;“未知數(shù)的最高次數(shù)是2”;“二次項的系數(shù)不等于0”;“整式方程”.5、B【分析】根據(jù)余弦的定義求解.【詳解】解:∵在Rt△ABC中,∠C=90°,cosB=,

∴BC=10cos40°.

故選:B.【點睛】本題考查解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.6、B【分析】根據(jù)圓錐的側面積,代入數(shù)進行計算即可.【詳解】解:圓錐的側面積2π×1×1=1π.故選:B.【點睛】本題主要考查了圓錐的計算,掌握圓錐的計算是解題的關鍵.7、A【解析】設斜坡的鉛直高度為3x,水平距離為4x,然后根據(jù)勾股定理求解即可.【詳解】設斜坡的鉛直高度為3x,水平距離為4x,由勾股定理得9x2+16x2=100,∴x=2,∴3x=6m.故選A.【點睛】此題主要考查坡度坡角及勾股定理的運用,需注意的是坡度是坡角的正切值,是鉛直高度h和水平寬l的比,我們把斜坡面與水平面的夾角叫做坡角,若用α表示坡角,可知坡度與坡角的關系是.8、B【分析】由△ABC經(jīng)過位似變換得到△DEF,點O是位似中心,根據(jù)位似圖形的性質得到AB:DO═2:3,進而得出答案.【詳解】∵△ABC與△DEF位似,位似中心為點O,且△ABC的面積等于△DEF面積的,∴=,AC∥DF,∴==,∴=.故選:B.【點睛】此題考查了位似圖形的性質.注意掌握位似是相似的特殊形式,位似比等于相似比,其對應的面積比等于相似比的平方.9、A【分析】根據(jù)只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程可得m?1≠0,再解即可.【詳解】解:由題意得:m﹣1≠0,解得:m≠1,故選:A.【點睛】此題主要考查了一元二次方程定義,關鍵是掌握判斷一個方程是否是一元二次方程應注意抓住5個方面:“化簡后”;“一個未知數(shù)”;“未知數(shù)的最高次數(shù)是2”;“二次項的系數(shù)不等于0”;“整式方程”.10、A【分析】由反比例函數(shù)k>0,函數(shù)經(jīng)過一三象限即可求解;【詳解】∵k=2>0,∴反比例函數(shù)經(jīng)過第一、三象限;故選:A.【點睛】本題考查的是反比例函數(shù)的圖像與性質,比較簡單,需要熟練掌握反比例函數(shù)的圖像與性質.二、填空題(每小題3分,共24分)11、x=2或0【分析】根據(jù)一元二次方程的解法即可求出答案.【詳解】解:∵(x﹣1)2=1,∴x﹣1=±1,∴x=2或0故答案為:x=2或0【點睛】本題主要考查解一元二次方程的方法,形如x2=p或(nx+m)2=p(p?0)的一元二次方程可采用直接開平方的方法解一元二次方程.12、【分析】將△BPC繞點B逆時針旋轉60°得△BEA,根據(jù)旋轉的性質得BE=BP=4,AE=PC=5,∠PBE=60°,則△BPE為等邊三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延長BP,作AF⊥BP于點F,根據(jù)勾股定理的逆定理可得到△APE為直角三角形,且∠APE=90°,即可得到∠APB的度數(shù),在Rt△APF中利用三角函數(shù)求得AF和PF的長,則在Rt△ABF中利用勾股定理求得AB的長,進而求得三角形ABC的面積.【詳解】解:∵△ABC為等邊三角形,∴BA=BC,可將△BPC繞點B逆時針旋轉60°得△BEA,連EP,且延長BP,作AF⊥BP于點F.如圖,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE為等邊三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE為直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.∴△ABC的面積=AB2=(25+12)=;故答案為:.【點睛】本題考查了旋轉的性質:旋轉前后的兩個圖形全等,對應點與旋轉中心的連線段的夾角等于旋轉角,對應點到旋轉中心的距離相等.也考查了等邊三角形的判定與性質以及勾股定理的逆定理.13、3【解析】根據(jù)題意得m+n=?2,mn=?5,所以m+n?mn=2?(-5)=3.14、【解析】判斷出即是中心對稱,又是軸對稱圖形的個數(shù),然后結合概率計算公式,計算,即可.【詳解】解:等邊三角形、正方形、正五邊形、矩形、正六邊形圖案中既是中心對稱圖形,又是軸對稱圖形是:正方形、矩形、正六邊形共3種,故從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為:.故答案為.【點睛】考查中心對稱圖形和軸對稱圖形的判定,考查概率計算公式,難度中等.15、3,求的長【分析】(1)連接OC,如圖,利用切線的性質得∠OCD=90°,再根據(jù)含30°的直角三角形三邊的關系得到OD=2,然后計算OA+OD即可;

(2)添加∠DCB=30°,求ACAC的長,利用圓周角定理得到∠ACB=90°,再證明∠A=∠DCB=30°,然后根據(jù)含30°的直角三角形三邊的關系求AC的長.【詳解】解:(1)連接OC,如圖,

∵CD為切線,

∴OC⊥CD,

∴∠OCD=90°,

∵∠D=30°,

∴OD=2OC=2,

∴AD=AO+OD=1+2=3;

(2)添加∠DCB=30°,求AC的長,

解:∵AB為直徑,

∴∠ACB=90°,

∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,

∴∠ACO=∠DCB,

∵∠ACO=∠A,

∴∠A=∠DCB=30°,

在Rt△ACB中,BC=AB=1,

∴AC==.故答案為3;,求的長.【點睛】本題考查了切線的性質:圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,得出垂直關系.16、x1=2,x2=﹣1【解析】解:方程兩邊平方得,x2﹣x=2,整理得:x2﹣x﹣2=0,解得:x1=2,x2=﹣1.經(jīng)檢驗,x1=2,x2=﹣1都是原方程的解,所以方程的解是x1=2,x2=﹣1.故答案為:x1=2,x2=﹣1.17、【解析】試題分析:有兩組角對應相等的兩個三角形相似;兩組邊對應成比例且夾角相等的三角形相似.所以在本題的條件的需要滿足考點:相似三角形的判定點評:解答本題的的關鍵是熟練掌握有兩組角對應相等的兩個三角形相似;兩組邊對應成比例且夾角相等的三角形相似.18、【分析】根據(jù)旋轉的性質,得到,,利用三角形內(nèi)角和定理,得到,即可得到答案.【詳解】解:將繞著點順時針旋轉后得到,∴,,∴,∴.故答案為:20°.【點睛】本題考查了旋轉的性質,三角形內(nèi)角和定理,以及角的和差問題,解題的關鍵是熟練掌握旋轉的性質,正確求出角的度數(shù).三、解答題(共66分)19、,【分析】通過觀察方程形式,利用二次三項式的因式分解法解方程比較簡單.【詳解】解:原方程變形為∴,.【點睛】此題考查因式分解法解一元二次方程,解題關鍵在于掌握運算法則.20、(1)28.8;(2)【分析】(1)用喜歡聲樂的人數(shù)除以它所占百分比即可得到調查的總人數(shù),用總人數(shù)分別減去喜歡舞蹈、樂器、和其它的人數(shù)得到喜歡戲曲的人數(shù),即可得出答案;(2)先畫樹狀圖展示所有12種等可能的結果數(shù),再找出恰好選中“①舞蹈、③聲樂”兩項活動的結果數(shù),然后根據(jù)概率公式計算.【詳解】(1)抽查的人數(shù)=8÷16%=50(名);喜歡“戲曲”活動項目的人數(shù)=50﹣12﹣16﹣8﹣10=4(人);扇形統(tǒng)計圖中“戲曲”部分對應的扇形的圓心角為360°×=28.8°;故答案為:28.8;(2)舞蹈、樂器、聲樂、戲曲的序號依次用①②③④表示,畫樹狀圖:共有12種等可能的結果數(shù),其中恰好選中“①舞蹈、③聲樂”兩項活動的有2種情況,所有故恰好選中“舞蹈、聲樂”兩項活動的概率==.【點睛】本題考查了列表法或樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.也考查了扇形統(tǒng)計圖和條形統(tǒng)計圖.21、(1)平方米;(2)米;【分析】(1)先根據(jù)圓周角定理可得弦BC為直徑,即可得到AB=AC,根據(jù)特殊角的銳角三角函數(shù)值可求得AB的長,最后根據(jù)扇形的面積公式即可求得結果;(2)設圓錐底面圓的半徑為r,而弧BC的長即為圓錐底面的周長,根據(jù)弧長公式及圓的周長公式即可求得結果.【詳解】(1)∵∠BAC=90°∴弦BC為直徑∴AB=AC∴AB=AC=BC·sin45°=∴S陰影=S⊙O-S扇形ABC=()2-;(2)設圓錐底面圓的半徑為r,而弧BC的長即為圓錐底面的周長,由題意得2r=,解得r=答:(1)被剪掉的陰影部分的面積為;(2)該圓錐的底面圓半徑是.【點睛】圓周角定理,特殊角的銳角三角函數(shù)值,扇形的面積公式,弧長公式,計算能力是初中數(shù)學學習中一個極為重要的能力,是中考的熱點,在各種題型中均有出現(xiàn),一般難度不大,需特別注意.22、(1),D;(2)是直角三角形,見解析;(3),.【分析】(1)直接將(?1,0),代入解析式進而得出答案,再利用配方法求出函數(shù)頂點坐標;(2)分別求出AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,進而利用勾股定理的逆定理得出即可;(3)利用軸對稱最短路線求法得出M點位置,求出直線的解析式,可得M點坐標,然后易求此時△ACM的周長.【詳解】解:(1)∵點在拋物線上,∴,解得:.∴拋物線的解析式為,∵,∴頂點的坐標為:;(2)是直角三角形,證明:當時,∴,即,當時,,解得:,,∴,∴,,,∵,,,∴,∴是直角三角形;(3)如圖所示:BC與對稱軸交于點M,連接,根據(jù)軸對稱性及兩點之間線段最短可知,此時的值最小,即周長最小,設直線解析式為:,則,解得:,故直線的解析式為:,∵拋物線對稱軸為∴當時,,∴,最小周長是:.【點睛】此題主要考查了二次函數(shù)綜合應用、利用軸對稱求最短路線以及勾股定理的逆定理等知識,得出M點位置是解題關鍵.23、(1)拋物線的解析式為;頂點的坐標為;(2)3;(3)點的坐標為或.【分析】(1)用待定系數(shù)法即可求出拋物線的解析式,進而即可求出頂點坐標;(2)先將點C的橫坐標代入拋物線的解析式中求出縱坐標,根據(jù)B,C的坐標得出,,從而有,最后利用求解即可;(3)設為.由于,所以當以,,三點為頂點的三角形與相似時,分兩種情況:或,分別建立方程計算即可.【詳解】解:(1)∵拋物線過原點,且與軸交于點,∴,解得.∴拋物線的解析式為.∵,∴頂點的坐標為.(2)∵在拋物線上,∴.作軸于,作軸于,則,,∴,.∴.∵,.∴.(3)假設存在.設點的橫坐標為,則為.由于,所以當以,,三點為頂點的三角形與相似時,有或∴或.解得或.∴存在點,使以,,三點為頂點的三角形與相似.∴點的坐標為或.【點睛】本題主要考查二次函數(shù)與幾何綜合,掌握二次函數(shù)的圖象和性質,相似三角形的性質是解題的關鍵.24、(1)詳見解析;(2)⊙O的半徑是.【分析】(1)連接OA,求出OA∥BC,根據(jù)平行線的性質和等腰三角形的性質得出∠OBA=∠OAB,∠OBA=∠ABC,即可得出答案;(2)根據(jù)矩形的性質求出OD=AC=1,根據(jù)勾股定理求出BC,根據(jù)垂徑定理求出BD,再根據(jù)勾股定理求出OB即可.【詳解】(1)證明:連接OA,∵OB=OA,∴∠OBA=∠OAB,∵AC切⊙O于A,∴OA⊥AC,∵BC⊥AC,∴OA∥BC,∴∠OBA=∠ABC,∴∠ABC=∠ABO;(2)解:過O作OD⊥BC于D,∵OD⊥BC,BC⊥AC,OA⊥AC,∴∠ODC=∠DCA=∠OAC=90°,∴OD=AC=1,在Rt△ACB中,AB=,AC=1,由勾股定理得:BC==3,∵OD⊥BC,OD過O,∴BD=DC=BC==1.5,在Rt△ODB中,由勾股定理得:OB=,即⊙O的半徑是.【點睛】此題主要考查切線的性質及判定,解題的關鍵熟知等腰三角形的性質、垂徑定理及切線的性質.25、(1);(1)圖見解析,頂點坐標是;(3)或.【分析】(1)利用待定系數(shù)法求解即可;(1)先化為,即可得出頂點坐標,并作出圖像;(3)根據(jù)圖象即可得出,或

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論