




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京豐臺(tái)區(qū)北京第十二中學(xué)2024屆高三4月月考試數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在復(fù)平面內(nèi),復(fù)數(shù)(,)對(duì)應(yīng)向量(O為坐標(biāo)原點(diǎn)),設(shè),以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國(guó)數(shù)學(xué)家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導(dǎo)出復(fù)數(shù)乘方公式:,已知,則()A. B.4 C. D.162.給出下列三個(gè)命題:①“”的否定;②在中,“”是“”的充要條件;③將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象.其中假命題的個(gè)數(shù)是()A.0 B.1 C.2 D.33.已知復(fù)數(shù)(為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是()A. B. C. D.4.“完全數(shù)”是一些特殊的自然數(shù),它所有的真因子(即除了自身以外的約數(shù))的和恰好等于它本身.古希臘數(shù)學(xué)家畢達(dá)哥拉斯公元前六世紀(jì)發(fā)現(xiàn)了第一、二個(gè)“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個(gè)完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則6和28不在同一組的概率為()A. B. C. D.5.已知函數(shù),若函數(shù)在上有3個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.6.已知點(diǎn)是拋物線:的焦點(diǎn),點(diǎn)為拋物線的對(duì)稱軸與其準(zhǔn)線的交點(diǎn),過(guò)作拋物線的切線,切點(diǎn)為,若點(diǎn)恰好在以,為焦點(diǎn)的雙曲線上,則雙曲線的離心率為()A. B. C. D.7.在正方體中,點(diǎn)、分別為、的中點(diǎn),過(guò)點(diǎn)作平面使平面,平面若直線平面,則的值為()A. B. C. D.8.劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學(xué)家,中國(guó)古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”,這可視為中國(guó)古代極限觀念的佳作,割圓術(shù)的核心思想是將一個(gè)圓的內(nèi)接正n邊形等分成n個(gè)等腰三角形(如圖所示),當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,運(yùn)用割圓術(shù)的思想,得到的近似值為()A. B. C. D.9.設(shè)不等式組,表示的平面區(qū)域?yàn)椋趨^(qū)域內(nèi)任取一點(diǎn),則點(diǎn)的坐標(biāo)滿足不等式的概率為A. B.C. D.10.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.11.設(shè)是定義域?yàn)榈呐己瘮?shù),且在單調(diào)遞增,,則()A. B.C. D.12.設(shè),則““是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必條件二、填空題:本題共4小題,每小題5分,共20分。13.已知,,且,則最小值為_(kāi)_________.14.已知函數(shù),則函數(shù)的極大值為_(kāi)__________.15.已知函數(shù)為上的奇函數(shù),滿足.則不等式的解集為_(kāi)_______.16.過(guò)直線上一動(dòng)點(diǎn)向圓引兩條切線MA,MB,切點(diǎn)為A,B,若,則四邊形MACB的最小面積的概率為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓M:及定點(diǎn),點(diǎn)A是圓M上的動(dòng)點(diǎn),點(diǎn)B在上,點(diǎn)G在上,且滿足,,點(diǎn)G的軌跡為曲線C.(1)求曲線C的方程;(2)設(shè)斜率為k的動(dòng)直線l與曲線C有且只有一個(gè)公共點(diǎn),與直線和分別交于P、Q兩點(diǎn).當(dāng)時(shí),求(O為坐標(biāo)原點(diǎn))面積的取值范圍.18.(12分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點(diǎn),是上異于,的點(diǎn),.(1)證明:平面平面;(2)若點(diǎn)為半圓弧上的一個(gè)三等分點(diǎn)(靠近點(diǎn))求二面角的余弦值.19.(12分)如圖,在直棱柱中,底面為菱形,,,與相交于點(diǎn),與相交于點(diǎn).(1)求證:平面;(2)求直線與平面所成的角的正弦值.20.(12分)已知橢圓與拋物線有共同的焦點(diǎn),且離心率為,設(shè)分別是為橢圓的上下頂點(diǎn)(1)求橢圓的方程;(2)過(guò)點(diǎn)與軸不垂直的直線與橢圓交于不同的兩點(diǎn),當(dāng)弦的中點(diǎn)落在四邊形內(nèi)(含邊界)時(shí),求直線的斜率的取值范圍.21.(12分)某大學(xué)開(kāi)學(xué)期間,該大學(xué)附近一家快餐店招聘外賣(mài)騎手,該快餐店提供了兩種日工資結(jié)算方案:方案規(guī)定每日底薪100元,外賣(mài)業(yè)務(wù)每完成一單提成2元;方案規(guī)定每日底薪150元,外賣(mài)業(yè)務(wù)的前54單沒(méi)有提成,從第55單開(kāi)始,每完成一單提成5元.該快餐店記錄了每天騎手的人均業(yè)務(wù)量,現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為七組,整理得到如圖所示的頻率分布直方圖.(1)隨機(jī)選取一天,估計(jì)這一天該快餐店的騎手的人均日外賣(mài)業(yè)務(wù)量不少于65單的概率;(2)從以往統(tǒng)計(jì)數(shù)據(jù)看,新聘騎手選擇日工資方案的概率為,選擇方案的概率為.若甲、乙、丙、丁四名騎手分別到該快餐店應(yīng)聘,四人選擇日工資方案相互獨(dú)立,求至少有兩名騎手選擇方案的概率,(3)若僅從人日均收入的角度考慮,請(qǐng)你為新聘騎手做出日工資方案的選擇,并說(shuō)明理由.(同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)22.(10分)設(shè)數(shù)陣,其中、、、.設(shè),其中,且.定義變換為“對(duì)于數(shù)陣的每一行,若其中有或,則將這一行中每個(gè)數(shù)都乘以;若其中沒(méi)有且沒(méi)有,則這一行中所有數(shù)均保持不變”(、、、).表示“將經(jīng)過(guò)變換得到,再將經(jīng)過(guò)變換得到、,以此類推,最后將經(jīng)過(guò)變換得到”,記數(shù)陣中四個(gè)數(shù)的和為.(1)若,寫(xiě)出經(jīng)過(guò)變換后得到的數(shù)陣;(2)若,,求的值;(3)對(duì)任意確定的一個(gè)數(shù)陣,證明:的所有可能取值的和不超過(guò).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】
根據(jù)復(fù)數(shù)乘方公式:,直接求解即可.【題目詳解】,.故選:D【題目點(diǎn)撥】本題考查了復(fù)數(shù)的新定義題目、同時(shí)考查了復(fù)數(shù)模的求法,解題的關(guān)鍵是理解棣莫弗定理,將復(fù)數(shù)化為棣莫弗定理形式,屬于基礎(chǔ)題.2、C【解題分析】
結(jié)合不等式、三角函數(shù)的性質(zhì),對(duì)三個(gè)命題逐個(gè)分析并判斷其真假,即可選出答案.【題目詳解】對(duì)于命題①,因?yàn)?所以“”是真命題,故其否定是假命題,即①是假命題;對(duì)于命題②,充分性:中,若,則,由余弦函數(shù)的單調(diào)性可知,,即,即可得到,即充分性成立;必要性:中,,若,結(jié)合余弦函數(shù)的單調(diào)性可知,,即,可得到,即必要性成立.故命題②正確;對(duì)于命題③,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【題目點(diǎn)撥】本題考查了命題真假的判斷,考查了余弦函數(shù)單調(diào)性的應(yīng)用,考查了三角函數(shù)圖象的平移變換,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.3、A【解題分析】
直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求得的坐標(biāo)得出答案.【題目詳解】解:,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是.故選:A.【題目點(diǎn)撥】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.4、C【解題分析】
先求出五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè)的基本事件總數(shù)為,再求出6和28恰好在同一組包含的基本事件個(gè)數(shù),根據(jù)即可求出6和28不在同一組的概率.【題目詳解】解:根據(jù)題意,將五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則基本事件總數(shù)為,則6和28恰好在同一組包含的基本事件個(gè)數(shù),∴6和28不在同一組的概率.故選:C.【題目點(diǎn)撥】本題考查古典概型的概率的求法,涉及實(shí)際問(wèn)題中組合數(shù)的應(yīng)用.5、B【解題分析】
根據(jù)分段函數(shù),分當(dāng),,將問(wèn)題轉(zhuǎn)化為的零點(diǎn)問(wèn)題,用數(shù)形結(jié)合的方法研究.【題目詳解】當(dāng)時(shí),,令,在是增函數(shù),時(shí),有一個(gè)零點(diǎn),當(dāng)時(shí),,令當(dāng)時(shí),,在上單調(diào)遞增,當(dāng)時(shí),,在上單調(diào)遞減,所以當(dāng)時(shí),取得最大值,因?yàn)樵谏嫌?個(gè)零點(diǎn),所以當(dāng)時(shí),有2個(gè)零點(diǎn),如圖所示:所以實(shí)數(shù)的取值范圍為綜上可得實(shí)數(shù)的取值范圍為,故選:B【題目點(diǎn)撥】本題主要考查了函數(shù)的零點(diǎn)問(wèn)題,還考查了數(shù)形結(jié)合的思想和轉(zhuǎn)化問(wèn)題的能力,屬于中檔題.6、D【解題分析】
根據(jù)拋物線的性質(zhì),設(shè)出直線方程,代入拋物線方程,求得k的值,設(shè)出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【題目詳解】直線F2A的直線方程為:y=kx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設(shè)雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【題目點(diǎn)撥】本題考查拋物線及雙曲線的方程及簡(jiǎn)單性質(zhì),考查轉(zhuǎn)化思想,考查計(jì)算能力,屬于中檔題.7、B【解題分析】
作出圖形,設(shè)平面分別交、于點(diǎn)、,連接、、,取的中點(diǎn),連接、,連接交于點(diǎn),推導(dǎo)出,由線面平行的性質(zhì)定理可得出,可得出點(diǎn)為的中點(diǎn),同理可得出點(diǎn)為的中點(diǎn),結(jié)合中位線的性質(zhì)可求得的值.【題目詳解】如下圖所示:設(shè)平面分別交、于點(diǎn)、,連接、、,取的中點(diǎn),連接、,連接交于點(diǎn),四邊形為正方形,、分別為、的中點(diǎn),則且,四邊形為平行四邊形,且,且,且,則四邊形為平行四邊形,,平面,則存在直線平面,使得,若平面,則平面,又平面,則平面,此時(shí),平面為平面,直線不可能與平面平行,所以,平面,,平面,平面,平面平面,,,所以,四邊形為平行四邊形,可得,為的中點(diǎn),同理可證為的中點(diǎn),,,因此,.故選:B.【題目點(diǎn)撥】本題考查線段長(zhǎng)度比值的計(jì)算,涉及線面平行性質(zhì)的應(yīng)用,解答的關(guān)鍵就是找出平面與正方體各棱的交點(diǎn)位置,考查推理能力與計(jì)算能力,屬于中等題.8、A【解題分析】
設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,則每個(gè)等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當(dāng)時(shí)即可為所求.【題目詳解】由割圓術(shù)可知當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,所以每個(gè)等腰三角形的面積為,所以圓的面積為,即,所以當(dāng)時(shí),可得,故選:A【題目點(diǎn)撥】本題考查三角形面積公式的應(yīng)用,考查閱讀分析能力.9、A【解題分析】
畫(huà)出不等式組表示的區(qū)域,求出其面積,再得到在區(qū)域內(nèi)的面積,根據(jù)幾何概型的公式,得到答案.【題目詳解】畫(huà)出所表示的區(qū)域,易知,所以的面積為,滿足不等式的點(diǎn),在區(qū)域內(nèi)是一個(gè)以原點(diǎn)為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項(xiàng).【題目點(diǎn)撥】本題考查由約束條件畫(huà)可行域,求幾何概型,屬于簡(jiǎn)單題.10、C【解題分析】
由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【題目詳解】連接,,如圖:又,則為異面直線與所成的角.因?yàn)榍胰庵鶠橹比庵唷嗝?,∴,又,,∴,∴,解?故選C【題目點(diǎn)撥】考查直三棱柱的定義,線面垂直的性質(zhì),考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎(chǔ)題.11、C【解題分析】
根據(jù)偶函數(shù)的性質(zhì),比較即可.【題目詳解】解:顯然,所以是定義域?yàn)榈呐己瘮?shù),且在單調(diào)遞增,所以故選:C【題目點(diǎn)撥】本題考查對(duì)數(shù)的運(yùn)算及偶函數(shù)的性質(zhì),是基礎(chǔ)題.12、B【解題分析】
解出兩個(gè)不等式的解集,根據(jù)充分條件和必要條件的定義,即可得到本題答案.【題目詳解】由,得,又由,得,因?yàn)榧?,所以“”是“”的必要不充分條件.故選:B【題目點(diǎn)撥】本題主要考查必要不充分條件的判斷,其中涉及到絕對(duì)值不等式和一元二次不等式的解法.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
首先整理所給的代數(shù)式,然后結(jié)合均值不等式的結(jié)論即可求得其最小值.【題目詳解】,結(jié)合可知原式,且,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.即最小值為.【題目點(diǎn)撥】在應(yīng)用基本不等式求最值時(shí),要把握不等式成立的三個(gè)條件,就是“一正——各項(xiàng)均為正;二定——積或和為定值;三相等——等號(hào)能否取得”,若忽略了某個(gè)條件,就會(huì)出現(xiàn)錯(cuò)誤.14、【解題分析】
對(duì)函數(shù)求導(dǎo),通過(guò)賦值,求得,再對(duì)函數(shù)單調(diào)性進(jìn)行分析,求得極大值.【題目詳解】,故解得,,令,解得函數(shù)在單調(diào)遞增,在單調(diào)遞減,故的極大值為故答案為:.【題目點(diǎn)撥】本題考查函數(shù)極值的求解,難點(diǎn)是要通過(guò)賦值,求出未知量.15、【解題分析】
構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷出函數(shù)的單調(diào)性,再將所求不等式變形為,利用函數(shù)的單調(diào)性即可得解.【題目詳解】設(shè),則,設(shè),則.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減;當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增.所以,函數(shù)在處取得極小值,也是最小值,即,,,,即,所以,函數(shù)在上為增函數(shù),函數(shù)為上的奇函數(shù),則,,則不等式等價(jià)于,又,解得.因此,不等式的解集為.故答案為:.【題目點(diǎn)撥】本題主要考查不等式的求解,構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)和函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.綜合性較強(qiáng).16、.【解題分析】
先求圓的半徑,四邊形的最小面積,轉(zhuǎn)化為的最小值為,求出切線長(zhǎng)的最小值,再求的距離也就是圓心到直線的距離,可解得的取值范圍,利用幾何概型即可求得概率.【題目詳解】由圓的方程得,所以圓心為,半徑為,四邊形的面積,若四邊形的最小面積,所以的最小值為,而,即的最小值,此時(shí)最小為圓心到直線的距離,此時(shí),因?yàn)?,所以,所以的概率為.【題目點(diǎn)撥】本題考查直線與圓的位置關(guān)系,及與長(zhǎng)度有關(guān)的幾何概型,考查了學(xué)生分析問(wèn)題的能力,難度一般.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解題分析】
(1)根據(jù)題意得到GB是線段的中垂線,從而為定值,根據(jù)橢圓定義可知點(diǎn)G的軌跡是以M,N為焦點(diǎn)的橢圓,即可求出曲線C的方程;(2)聯(lián)立直線方程和橢圓方程,表示處的面積代入韋達(dá)定理化簡(jiǎn)即可求范圍.【題目詳解】(1)為的中點(diǎn),且是線段的中垂線,,又,∴點(diǎn)G的軌跡是以M,N為焦點(diǎn)的橢圓,設(shè)橢圓方程為(),則,,,所以曲線C的方程為.(2)設(shè)直線l:(),由消去y,可得.因?yàn)橹本€l總與橢圓C有且只有一個(gè)公共點(diǎn),所以,.①又由可得;同理可得.由原點(diǎn)O到直線的距離為和,可得.②將①代入②得,當(dāng)時(shí),,綜上,面積的取值范圍是.【題目點(diǎn)撥】此題考查了軌跡和直線與曲線相交問(wèn)題,軌跡通過(guò)已知條件找到幾何關(guān)系從而判斷軌跡,直線與曲線相交一般聯(lián)立設(shè)而不求韋達(dá)定理進(jìn)行求解即可,屬于一般性題目.18、(1)詳見(jiàn)解析;(2).【解題分析】
(1)由直徑所對(duì)的圓周角為,可知,通過(guò)計(jì)算,利用勾股定理的逆定理可以判斷出為直角三角形,所以有.由已知可以證明出,這樣利用線面垂直的判定定理可以證明平面,利用面面垂直的判定定理可以證明出平面平面;(2)以為坐標(biāo)原點(diǎn),分別以垂直于平面向上的方向、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,求出相應(yīng)點(diǎn)的坐標(biāo),求出平面的一個(gè)法向量和平面的法向量,利用空間向量數(shù)量積運(yùn)算公式,可以求出二面角的余弦值.【題目詳解】解:(1)證明:因?yàn)榘雸A弧上的一點(diǎn),所以.在中,分別為的中點(diǎn),所以,且.于是在中,,所以為直角三角形,且.因?yàn)椋?所以.因?yàn)?,,,所以平?又平面,所以平面平面.(2)由已知,以為坐標(biāo)原點(diǎn),分別以垂直于、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的一個(gè)法向量為,則即,取,得.設(shè)平面的法向量,則即,取,得.所以,又二面角為銳角,所以二面角的余弦值為.【題目點(diǎn)撥】本題考查了利用線面垂直判定面面垂直、利用空間向量數(shù)量積求二面角的余弦值問(wèn)題.19、(1)證明見(jiàn)解析(2)【解題分析】
(1)要證明平面,只需證明,即可:(2)取中點(diǎn),連,以為原點(diǎn),分別為軸建立空間直角坐標(biāo)系,分別求出與平面的法向量,再利用計(jì)算即可.【題目詳解】(1)∵底面為菱形,∵直棱柱平面.∵平面..平面;(2)如圖,取中點(diǎn),連,以為原點(diǎn),分別為軸建立如圖所示空間直角坐標(biāo)系:,點(diǎn),設(shè)平面的法向量為,,有,令,得又,設(shè)直線與平面所成的角為,所以故直線與平面所成的角的正弦值為.【題目點(diǎn)撥】本題考查線面垂直的證明以及向量法求線面角的正弦值,考查學(xué)生的運(yùn)算求解能力,本題解題關(guān)鍵是正確寫(xiě)出點(diǎn)的坐標(biāo).20、(1)(2)或【解題分析】
(1)由已知條件得到方程組,解得即可;(2)由題意得直線的斜率存在,設(shè)直線方程為,聯(lián)立直線與橢圓方程,消元、列出韋達(dá)定理,由得到的范圍,設(shè)弦中點(diǎn)坐標(biāo)為則,所以在軸上方,只需位于內(nèi)(含邊界)就可以,即滿足,得到不等式組,解得即可;【題目詳解】解:(1)由已知橢圓右焦點(diǎn)坐標(biāo)為,離心率為,,,所以橢圓的標(biāo)準(zhǔn)方程為;(2)由題意得直線的斜率存在,設(shè)直線方程為聯(lián)立,消元整理得,,由,解得設(shè)弦中點(diǎn)坐標(biāo)為,所以在軸上方,只需位于內(nèi)(含邊界)就可以,即滿足,即,解得或【題目點(diǎn)撥】本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì),直線與橢圓的綜合應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.21、(1)0.4;(2);(3)應(yīng)選擇方案,理由見(jiàn)解析【解題分析】
(1)根據(jù)頻率分布直方圖,可求得該快餐店的騎手的人均日外賣(mài)業(yè)務(wù)量不少于65單的頻率,即可估算其概率;(2)根據(jù)獨(dú)立重復(fù)試驗(yàn)概率求法,先求得四人中有0人、1人選擇方案的概率,再由對(duì)立事件概率性質(zhì)即可求得至少有兩名騎手選擇方案的概率;(3)設(shè)騎手每日完成外賣(mài)業(yè)務(wù)量為件,分別表示出方案的日工資和方案的日工資函數(shù)解析式,即可計(jì)算兩種計(jì)算方式下的數(shù)學(xué)期望,并根據(jù)數(shù)學(xué)期望作出選擇.【題目詳解】(1)設(shè)事件為“隨機(jī)選取一天,這一天該快餐店的騎手的人均日外賣(mài)業(yè)務(wù)量不少于65單”.根據(jù)頻率分布直方圖可知快餐店的人均日外賣(mài)業(yè)務(wù)量不少于65單的頻率分別
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省濟(jì)寧市泗水一中下學(xué)期2025屆高三第四次模擬考試(5月)生物試題含解析
- 南京理工大學(xué)《居住區(qū)規(guī)劃及住宅設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 火力發(fā)電廠施工中的暖通工程管理考核試卷
- 礦物加工廠人力資源管理與培訓(xùn)考核試卷
- 玻璃熔化過(guò)程中的節(jié)能減排考核試卷
- 硅冶煉廠的生產(chǎn)成本控制考核試卷
- 監(jiān)理工程師合同條款解釋與應(yīng)用能力考核試卷
- 海洋工程船舶拆解與回收考核試卷
- 棉花加工設(shè)備的自動(dòng)化改造案例考核試卷
- 期貨市場(chǎng)業(yè)務(wù)外包管理與合作考核試卷
- 血液科疾病診療規(guī)范診療指南診療常規(guī)2022版
- PDCA降低I類切口感染發(fā)生率
- 幼兒園《開(kāi)關(guān)門(mén)要小心》
- 《運(yùn)營(yíng)管理》第2版題庫(kù)與參考答案
- 基于PLC的自動(dòng)配料系統(tǒng)畢業(yè)設(shè)計(jì)論文
- 煙花爆竹工程設(shè)計(jì)安全規(guī)范
- 回旋加速器的五個(gè)有關(guān)問(wèn)題
- 四川省中學(xué)生學(xué)籍卡片
- 夕陽(yáng)簫鼓-鋼琴譜(共11頁(yè))
- 地面沉降監(jiān)測(cè)技術(shù)要求
評(píng)論
0/150
提交評(píng)論