北京市順義區(qū)楊鎮(zhèn)一中2024屆高三上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第1頁
北京市順義區(qū)楊鎮(zhèn)一中2024屆高三上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第2頁
北京市順義區(qū)楊鎮(zhèn)一中2024屆高三上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第3頁
北京市順義區(qū)楊鎮(zhèn)一中2024屆高三上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第4頁
北京市順義區(qū)楊鎮(zhèn)一中2024屆高三上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

北京市順義區(qū)楊鎮(zhèn)一中2024屆高三上數(shù)學(xué)期末聯(lián)考模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),則““是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必條件2.一個(gè)袋中放有大小、形狀均相同的小球,其中紅球1個(gè)、黑球2個(gè),現(xiàn)隨機(jī)等可能取出小球,當(dāng)有放回依次取出兩個(gè)小球時(shí),記取出的紅球數(shù)為;當(dāng)無放回依次取出兩個(gè)小球時(shí),記取出的紅球數(shù)為,則()A., B.,C., D.,3.設(shè)分別為雙曲線的左、右焦點(diǎn),過點(diǎn)作圓的切線,與雙曲線的左、右兩支分別交于點(diǎn),若,則雙曲線漸近線的斜率為()A. B. C. D.4.已知、分別為雙曲線:(,)的左、右焦點(diǎn),過的直線交于、兩點(diǎn),為坐標(biāo)原點(diǎn),若,,則的離心率為()A.2 B. C. D.5.定義兩種運(yùn)算“★”與“◆”,對(duì)任意,滿足下列運(yùn)算性質(zhì):①★,◆;②()★★,◆◆,則(◆2020)(2020★2018)的值為()A. B. C. D.6.為比較甲、乙兩名高中學(xué)生的數(shù)學(xué)素養(yǎng),對(duì)課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進(jìn)行指標(biāo)測驗(yàn)(指標(biāo)值滿分為100分,分值高者為優(yōu)),根據(jù)測驗(yàn)情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達(dá)圖,則下面敘述不正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙 B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙 D.甲的六大素養(yǎng)中數(shù)學(xué)運(yùn)算最強(qiáng)7.已知,是橢圓的左、右焦點(diǎn),過的直線交橢圓于兩點(diǎn).若依次構(gòu)成等差數(shù)列,且,則橢圓的離心率為A. B. C. D.8.我國古代數(shù)學(xué)著作《九章算術(shù)》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.1009.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于()cm3A. B. C. D.10.已知集合,,則集合子集的個(gè)數(shù)為()A. B. C. D.11.已知為坐標(biāo)原點(diǎn),角的終邊經(jīng)過點(diǎn)且,則()A. B. C. D.12.已知復(fù)數(shù)滿足,則的共軛復(fù)數(shù)是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù),其中是虛數(shù)單位.若的實(shí)部與虛部相等,則實(shí)數(shù)的值為__________.14.已知多項(xiàng)式的各項(xiàng)系數(shù)之和為32,則展開式中含項(xiàng)的系數(shù)為______.15.某校初三年級(jí)共有名女生,為了了解初三女生分鐘“仰臥起坐”項(xiàng)目訓(xùn)練情況,統(tǒng)計(jì)了所有女生分鐘“仰臥起坐”測試數(shù)據(jù)(單位:個(gè)),并繪制了如下頻率分布直方圖,則分鐘至少能做到個(gè)仰臥起坐的初三女生有_____________個(gè).16.已知無蓋的圓柱形桶的容積是立方米,用來做桶底和側(cè)面的材料每平方米的價(jià)格分別為30元和20元,那么圓桶造價(jià)最低為________元.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等腰梯形中(如圖1),,,為線段的中點(diǎn),、為線段上的點(diǎn),,現(xiàn)將四邊形沿折起(如圖2)(1)求證:平面;(2)在圖2中,若,求直線與平面所成角的正弦值.18.(12分)已知函數(shù).(1)當(dāng)時(shí),解關(guān)于的不等式;(2)若對(duì)任意,都存在,使得不等式成立,求實(shí)數(shù)的取值范圍.19.(12分)三棱柱中,平面平面,,點(diǎn)為棱的中點(diǎn),點(diǎn)為線段上的動(dòng)點(diǎn).(1)求證:;(2)若直線與平面所成角為,求二面角的正切值.20.(12分)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若在上恒成立,求的取值范圍.21.(12分)已知拋物線E:y2=2px(p>0),焦點(diǎn)F到準(zhǔn)線的距離為3,拋物線E上的兩個(gè)動(dòng)點(diǎn)A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.線段AB的垂直平分線與x軸交于點(diǎn)C.(1)求拋物線E的方程;(2)求△ABC面積的最大值.22.(10分)如圖,已知在三棱錐中,平面,分別為的中點(diǎn),且.(1)求證:;(2)設(shè)平面與交于點(diǎn),求證:為的中點(diǎn).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

解出兩個(gè)不等式的解集,根據(jù)充分條件和必要條件的定義,即可得到本題答案.【詳解】由,得,又由,得,因?yàn)榧?,所以“”是“”的必要不充分條件.故選:B【點(diǎn)睛】本題主要考查必要不充分條件的判斷,其中涉及到絕對(duì)值不等式和一元二次不等式的解法.2、B【解析】

分別求出兩個(gè)隨機(jī)變量的分布列后求出它們的期望和方差可得它們的大小關(guān)系.【詳解】可能的取值為;可能的取值為,,,,故,.,,故,,故,.故選B.【點(diǎn)睛】離散型隨機(jī)變量的分布列的計(jì)算,應(yīng)先確定隨機(jī)變量所有可能的取值,再利用排列組合知識(shí)求出隨機(jī)變量每一種取值情況的概率,然后利用公式計(jì)算期望和方差,注意在取球模型中摸出的球有放回與無放回的區(qū)別.3、C【解析】

如圖所示:切點(diǎn)為,連接,作軸于,計(jì)算,,,,根據(jù)勾股定理計(jì)算得到答案.【詳解】如圖所示:切點(diǎn)為,連接,作軸于,,故,在中,,故,故,,根據(jù)勾股定理:,解得.故選:.【點(diǎn)睛】本題考查了雙曲線的漸近線斜率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.4、D【解析】

作出圖象,取AB中點(diǎn)E,連接EF2,設(shè)F1A=x,根據(jù)雙曲線定義可得x=2a,再由勾股定理可得到c2=7a2,進(jìn)而得到e的值【詳解】解:取AB中點(diǎn)E,連接EF2,則由已知可得BF1⊥EF2,F(xiàn)1A=AE=EB,設(shè)F1A=x,則由雙曲線定義可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=2a,所以x=2a,則EF2=2a,由勾股定理可得(4a)2+(2a)2=(2c)2,所以c2=7a2,則e故選:D.【點(diǎn)睛】本題考查雙曲線定義的應(yīng)用,考查離心率的求法,數(shù)形結(jié)合思想,屬于中檔題.對(duì)于圓錐曲線中求離心率的問題,關(guān)鍵是列出含有中兩個(gè)量的方程,有時(shí)還要結(jié)合橢圓、雙曲線的定義對(duì)方程進(jìn)行整理,從而求出離心率.5、B【解析】

根據(jù)新運(yùn)算的定義分別得出◆2020和2020★2018的值,可得選項(xiàng).【詳解】由()★★,得(+2)★★,又★,所以★,★,★,,以此類推,2020★2018★2018,又◆◆,◆,所以◆,◆,◆,,以此類推,◆2020,所以(◆2020)(2020★2018),故選:B.【點(diǎn)睛】本題考查定義新運(yùn)算,關(guān)鍵在于理解,運(yùn)用新定義進(jìn)行求值,屬于中檔題.6、D【解析】

根據(jù)所給的雷達(dá)圖逐個(gè)選項(xiàng)分析即可.【詳解】對(duì)于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對(duì)于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學(xué)建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng),故B正確;對(duì)于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對(duì)于D,甲的六大素養(yǎng)中數(shù)學(xué)運(yùn)算為80分,不是最強(qiáng)的,故D錯(cuò)誤;故選:D【點(diǎn)睛】本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計(jì)算,考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.7、D【解析】

如圖所示,設(shè)依次構(gòu)成等差數(shù)列,其公差為.根據(jù)橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.8、B【解析】

根據(jù)程序框圖中程序的功能,可以列方程計(jì)算.【詳解】由題意,.故選:B.【點(diǎn)睛】本題考查程序框圖,讀懂程序的功能是解題關(guān)鍵.9、D【解析】解:根據(jù)幾何體的三視圖知,該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù),計(jì)算它的體積為:V=V三棱柱+V半圓柱=×2×2×1+?π?12×1=(6+1.5π)cm1.故答案為6+1.5π.點(diǎn)睛:根據(jù)幾何體的三視圖知該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù)計(jì)算它的體積即可.10、B【解析】

首先求出,再根據(jù)含有個(gè)元素的集合有個(gè)子集,計(jì)算可得.【詳解】解:,,,子集的個(gè)數(shù)為.故選:.【點(diǎn)睛】考查列舉法、描述法的定義,以及交集的運(yùn)算,集合子集個(gè)數(shù)的計(jì)算公式,屬于基礎(chǔ)題.11、C【解析】

根據(jù)三角函數(shù)的定義,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出結(jié)果.【詳解】根據(jù)題意,,解得,所以,所以,所以.故選:C.【點(diǎn)睛】本題考查三角函數(shù)定義的應(yīng)用和二倍角的正弦公式,考查計(jì)算能力.12、B【解析】

根據(jù)復(fù)數(shù)的除法運(yùn)算法則和共軛復(fù)數(shù)的定義直接求解即可.【詳解】由,得,所以.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法的運(yùn)算法則,考查了復(fù)數(shù)的共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

直接由復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡,結(jié)合已知條件即可求出實(shí)數(shù)的值.【詳解】解:的實(shí)部與虛部相等,所以,計(jì)算得出.故答案為:【點(diǎn)睛】本題考查復(fù)數(shù)的乘法運(yùn)算和復(fù)數(shù)的概念,屬于基礎(chǔ)題.14、【解析】

令可得各項(xiàng)系數(shù)和為,得出,根據(jù)第一個(gè)因式展開式的常數(shù)項(xiàng)與第二個(gè)因式的展開式含一次項(xiàng)的積與第一個(gè)因式展開式含x的一次項(xiàng)與第二個(gè)因式常數(shù)項(xiàng)的積的和即為展開式中含項(xiàng),可得解.【詳解】令,則得,解得,所以展開式中含項(xiàng)為:,故答案為:【點(diǎn)睛】本題主要考查了二項(xiàng)展開式的系數(shù)和,二項(xiàng)展開式特定項(xiàng),賦值法,屬于中檔題.15、【解析】

根據(jù)數(shù)據(jù)先求出,再求出分鐘至少能做到個(gè)仰臥起坐的初三女生人數(shù)即可.【詳解】解:,.則分鐘至少能做到個(gè)仰臥起坐的初三女生人數(shù)為.故答案為:.【點(diǎn)睛】本題主要考查頻率分布直方圖,屬于基礎(chǔ)題.16、【解析】

設(shè)桶的底面半徑為,用表示出桶的總造價(jià),利用基本不等式得出最小值.【詳解】設(shè)桶的底面半徑為,高為,則,故,圓通的造價(jià)為解法一:當(dāng)且僅當(dāng),即時(shí)取等號(hào).解法二:,則,令,即,解得,此函數(shù)在單調(diào)遞增;令,即,解得,此函數(shù)在上單調(diào)遞減;令,即,解得,即當(dāng)時(shí),圓桶的造價(jià)最低.所以故答案為:【點(diǎn)睛】本題考查了基本不等式的應(yīng)用,注意驗(yàn)證等號(hào)成立的條件,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】

(1)先連接,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;(2)在圖2中,過點(diǎn)作,垂足為,連接,,證明平面平面,得到點(diǎn)在底面上的投影必落在直線上,記為點(diǎn)在底面上的投影,連接,,得出即是直線與平面所成角,再由題中數(shù)據(jù)求解,即可得出結(jié)果.【詳解】(1)連接,因?yàn)榈妊菪沃校ㄈ鐖D1),,,所以與平行且相等,即四邊形為平行四邊形;所以;又為線段的中點(diǎn),為中點(diǎn),易得:四邊形也為平行四邊形,所以;將四邊形沿折起后,平行關(guān)系沒有變化,仍有:,且,所以翻折后四邊形也為平行四邊形;故;因?yàn)槠矫?,平面,所以平面;?)在圖2中,過點(diǎn)作,垂足為,連接,,因?yàn)?,,翻折前梯形的高為,所以,則,;所以;又,,所以,即,所以;又,且平面,平面,所以平面;因此,平面平面;所以點(diǎn)在底面上的投影必落在直線上;記為點(diǎn)在底面上的投影,連接,,則平面;所以即是直線與平面所成角,因?yàn)?,所以,因此,,故;因?yàn)椋?,因此,故,所?即直線與平面所成角的正弦值為.【點(diǎn)睛】本題主要考查證明線面平行,以及求直線與平面所成的角,熟記線面平行的判定定理,以及線面角的求法即可,屬于??碱}型.18、(1);(2).【解析】

(1)分類討論去絕對(duì)值號(hào),然后解不等式即可.(2)因?yàn)閷?duì)任意,都存在,使得不等式成立,等價(jià)于,根據(jù)絕對(duì)值不等式易求,根據(jù)二次函數(shù)易求,然后解不等式即可.【詳解】解:(1)當(dāng)時(shí),,則當(dāng)時(shí),由得,,解得;當(dāng)時(shí),恒成立;當(dāng)時(shí),由得,,解得.所以的解集為(2)對(duì)任意,都存在,得成立,等價(jià)于.因?yàn)?,所以,且|,①當(dāng)時(shí),①式等號(hào)成立,即.又因?yàn)椋诋?dāng)時(shí),②式等號(hào)成立,即.所以,即即的取值范圍為:.【點(diǎn)睛】知識(shí):考查含兩個(gè)絕對(duì)值號(hào)的不等式的解法;恒成立問題和存在性問題求參變數(shù)的范圍問題;能力:分析問題和解決問題的能力以及運(yùn)算求解能力;中檔題.19、(1)見解析;(2)【解析】

(1)可證面,從而可得.(2)可證點(diǎn)為線段的三等分點(diǎn),再過作于,過作,垂足為,則為二面角的平面角,利用解直角三角形的方法可求.也可以建立如圖所示的空間直角坐標(biāo)系,利用兩個(gè)平面的法向量來計(jì)算二面角的平面角的余弦值,最后利用同角三角函數(shù)的基本關(guān)系式可求.【詳解】證明:(1)因?yàn)闉橹悬c(diǎn),所以.因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,而平面,故,又因?yàn)?,所以,則,又,故面,又面,所以.(2)由(1)可得:面在面內(nèi)的射影為,則為直線與平面所成的角,即.因?yàn)?,所以,所以,所以,即點(diǎn)為線段的三等分點(diǎn).解法一:過作于,則平面,所以,過作,垂足為,則為二面角的平面角,因?yàn)椋?,,則在中,有,所以二面角的平面角的正切值為.解法二:以點(diǎn)為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,設(shè)點(diǎn),由得:,即,,,點(diǎn),平面的一個(gè)法向量,又,,設(shè)平面的一個(gè)法向量為,則,令,則平面的一個(gè)法向量為.設(shè)二面角的平面角為,則,即,所以二面角的正切值為.【點(diǎn)睛】線線垂直的判定可由線面垂直得到,也可以由兩條線所成的角為得到,而線面垂直又可以由面面垂直得到,解題中注意三種垂直關(guān)系的轉(zhuǎn)化.空間中的角的計(jì)算,可以建立空間直角坐標(biāo)系把角的計(jì)算歸結(jié)為向量的夾角的計(jì)算,也可以構(gòu)建空間角,把角的計(jì)算歸結(jié)平面圖形中的角的計(jì)算.20、(1);(2)【解析】

(1),對(duì)函數(shù)求導(dǎo),分別求出和,即可求出在點(diǎn)處的切線方程;(2)對(duì)求導(dǎo),分、和三種情況討論的單調(diào)性,再結(jié)合在上恒成立,可求得的取值范圍.【詳解】(1)因?yàn)?所以,所以,則,故曲線在點(diǎn)處的切線方程為.(2)因?yàn)?所以,①當(dāng)時(shí),在上恒成立,則在上單調(diào)遞增,從而成立,故符合題意;②當(dāng)時(shí),令,解得,即在上單調(diào)遞減,則,故不符合題意;③當(dāng)時(shí),在上恒成立,即在上單調(diào)遞減,則,故不符合題意.綜上,的取值范圍為.【點(diǎn)睛】本題考查了曲線的切線方程的求法,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了不等式恒成立問題,利用分類討論是解決本題的較好方法,屬于中檔題.21、(1)y2=6x(2).【解析】

(1)根據(jù)拋物線定義,寫出焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,列方程即可得解;(2)根據(jù)中點(diǎn)坐標(biāo)表示出|AB|和點(diǎn)到直線的距離,得出面積,利用均值不等式求解最大值.【詳解】(1)拋物線E:y2=2px(p>0),焦點(diǎn)F(,0)到準(zhǔn)線x的距離為3,可得p=3,即有拋物線方程為y2=6x;(2)設(shè)線段AB的中點(diǎn)為M(x0,y0),則,y0,kAB,則線段A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論