版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
寧夏青銅峽市吳忠中學2024屆高三第一次大考數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設M是邊BC上任意一點,N為AM的中點,若,則的值為()A.1 B. C. D.2.若直線經(jīng)過拋物線的焦點,則()A. B. C.2 D.3.已知函數(shù),方程有四個不同的根,記最大的根的所有取值為集合,則“函數(shù)有兩個零點”是“”的().A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.“一帶一路”是“絲綢之路經(jīng)濟帶”和“21世紀海上絲綢之路”的簡稱,旨在積極發(fā)展我國與沿線國家經(jīng)濟合作關系,共同打造政治互信、經(jīng)濟融合、文化包容的命運共同體.自2015年以來,“一帶一路”建設成果顯著.如圖是2015—2019年,我國對“一帶一路”沿線國家進出口情況統(tǒng)計圖,下列描述錯誤的是()A.這五年,出口總額之和比進口總額之和大B.這五年,2015年出口額最少C.這五年,2019年進口增速最快D.這五年,出口增速前四年逐年下降5.若函數(shù)的圖象過點,則它的一條對稱軸方程可能是()A. B. C. D.6.已知集合,,則A. B. C. D.7.已知函數(shù)的圖像向右平移個單位長度后,得到的圖像關于軸對稱,,當取得最小值時,函數(shù)的解析式為()A. B.C. D.8.直角坐標系中,雙曲線()與拋物線相交于、兩點,若△是等邊三角形,則該雙曲線的離心率()A. B. C. D.9.已知拋物線的焦點為,是拋物線上兩個不同的點,若,則線段的中點到軸的距離為()A.5 B.3 C. D.210.中國古代數(shù)學著作《孫子算經(jīng)》中有這樣一道算術題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如.現(xiàn)將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于().A. B. C. D.11.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.12.已知集合,則=A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為,直線與拋物線相切于點,是上一點(不與重合),若以線段為直徑的圓恰好經(jīng)過,則點到拋物線頂點的距離的最小值是__________.14.已知函數(shù),對于任意都有,則的值為______________.15.已知,為正實數(shù),且,則的最小值為________________.16.已知雙曲線:(,),直線:與雙曲線的兩條漸近線分別交于,兩點.若(點為坐標原點)的面積為32,且雙曲線的焦距為,則雙曲線的離心率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若對于任意實數(shù),恒成立,求實數(shù)的范圍;(2)當時,是否存在實數(shù),使曲線:在點處的切線與軸垂直?若存在,求出的值;若不存在,說明理由.18.(12分)已知點是拋物線的頂點,,是上的兩個動點,且.(1)判斷點是否在直線上?說明理由;(2)設點是△的外接圓的圓心,點到軸的距離為,點,求的最大值.19.(12分)如圖,D是在△ABC邊AC上的一點,△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長.20.(12分)設函數(shù).(1)若,求函數(shù)的值域;(2)設為的三個內(nèi)角,若,求的值;21.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,直線交曲線于兩點,為中點.(1)求曲線的直角坐標方程和點的軌跡的極坐標方程;(2)若,求的值.22.(10分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在上存在兩個極值點,,且,證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】
設,通過,再利用向量的加減運算可得,結合條件即可得解.【題目詳解】設,則有.又,所以,有.故選B.【題目點撥】本題考查了向量共線及向量運算知識,利用向量共線及向量運算知識,用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.2、B【解題分析】
計算拋物線的交點為,代入計算得到答案.【題目詳解】可化為,焦點坐標為,故.故選:.【題目點撥】本題考查了拋物線的焦點,屬于簡單題.3、A【解題分析】
作出函數(shù)的圖象,得到,把函數(shù)有零點轉化為與在(2,4]上有交點,利用導數(shù)求出切線斜率,即可求得的取值范圍,再根據(jù)充分、必要條件的定義即可判斷.【題目詳解】作出函數(shù)的圖象如圖,由圖可知,,函數(shù)有2個零點,即有兩個不同的根,也就是與在上有2個交點,則的最小值為;設過原點的直線與的切點為,斜率為,則切線方程為,把代入,可得,即,∴切線斜率為,∴k的取值范圍是,∴函數(shù)有兩個零點”是“”的充分不必要條件,故選A.【題目點撥】本題主要考查了函數(shù)零點的判定,考查數(shù)學轉化思想方法與數(shù)形結合的解題思想方法,訓練了利用導數(shù)研究過曲線上某點處的切線方程,試題有一定的綜合性,屬于中檔題.4、D【解題分析】
根據(jù)統(tǒng)計圖中數(shù)據(jù)的含義進行判斷即可.【題目詳解】對A項,由統(tǒng)計圖可得,2015年出口額和進口額基本相等,而2016年到2019年出口額都大于進口額,則A正確;對B項,由統(tǒng)計圖可得,2015年出口額最少,則B正確;對C項,由統(tǒng)計圖可得,2019年進口增速都超過其余年份,則C正確;對D項,由統(tǒng)計圖可得,2015年到2016年出口增速是上升的,則D錯誤;故選:D【題目點撥】本題主要考查了根據(jù)條形統(tǒng)計圖和折線統(tǒng)計圖解決實際問題,屬于基礎題.5、B【解題分析】
把已知點坐標代入求出,然后驗證各選項.【題目詳解】由題意,,或,,不妨取或,若,則函數(shù)為,四個選項都不合題意,若,則函數(shù)為,只有時,,即是對稱軸.故選:B.【題目點撥】本題考查正弦型復合函數(shù)的對稱軸,掌握正弦函數(shù)的性質(zhì)是解題關鍵.6、C【解題分析】分析:根據(jù)集合可直接求解.詳解:,,故選C點睛:集合題也是每年高考的必考內(nèi)容,一般以客觀題形式出現(xiàn),一般解決此類問題時要先將參與運算的集合化為最簡形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進行運算.7、A【解題分析】
先求出平移后的函數(shù)解析式,結合圖像的對稱性和得到A和.【題目詳解】因為關于軸對稱,所以,所以,的最小值是.,則,所以.【題目點撥】本題主要考查三角函數(shù)的圖像變換及性質(zhì).平移圖像時需注意x的系數(shù)和平移量之間的關系.8、D【解題分析】
根據(jù)題干得到點A坐標為,代入拋物線得到坐標為,再將點代入雙曲線得到離心率.【題目詳解】因為三角形OAB是等邊三角形,設直線OA為,設點A坐標為,代入拋物線得到x=2b,故點A的坐標為,代入雙曲線得到故答案為:D.【題目點撥】求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關于的齊次式,結合轉化為的齊次式,然后等式(不等式)兩邊分別除以或轉化為關于的方程(不等式),解方程(不等式)即可得(的取值范圍).9、D【解題分析】
由拋物線方程可得焦點坐標及準線方程,由拋物線的定義可知,繼而可求出,從而可求出的中點的橫坐標,即為中點到軸的距離.【題目詳解】解:由拋物線方程可知,,即,.設則,即,所以.所以線段的中點到軸的距離為.故選:D.【題目點撥】本題考查了拋物線的定義,考查了拋物線的方程.本題的關鍵是由拋物線的定義求得兩點橫坐標的和.10、C【解題分析】從21開始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.11、B【解題分析】
由題意建立空間直角坐標系,表示出各點坐標后,利用即可得解.【題目詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.【題目點撥】本題考查了空間向量的應用,考查了空間想象能力,屬于基礎題.12、C【解題分析】
本題考查集合的交集和一元二次不等式的解法,滲透了數(shù)學運算素養(yǎng).采取數(shù)軸法,利用數(shù)形結合的思想解題.【題目詳解】由題意得,,則.故選C.【題目點撥】不能領會交集的含義易致誤,區(qū)分交集與并集的不同,交集取公共部分,并集包括二者部分.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
根據(jù)拋物線,不妨設,取,通過求導得,,再根據(jù)以線段為直徑的圓恰好經(jīng)過,則,得到,兩式聯(lián)立,求得點N的軌跡,再求解最值.【題目詳解】因為拋物線,不妨設,取,所以,即,所以,因為以線段為直徑的圓恰好經(jīng)過,所以,所以,所以,由,解得,所以點在直線上,所以當時,最小,最小值為.故答案為:2【題目點撥】本題主要考查直線與拋物線的位置關系直線的交軌問題,還考查了運算求解的能力,屬于中檔題.14、【解題分析】
由條件得到函數(shù)的對稱性,從而得到結果【題目詳解】∵f=f,∴x=是函數(shù)f(x)=2sin(ωx+φ)的一條對稱軸.∴f=±2.【題目點撥】本題考查了正弦型三角函數(shù)的對稱性,注意對稱軸必過最高點或最低點,屬于基礎題.15、【解題分析】
由,為正實數(shù),且,可知,于是,可得,再利用基本不等式即可得出結果.【題目詳解】解:,為正實數(shù),且,可知,,.當且僅當時取等號.的最小值為.故答案為:.【題目點撥】本題考查了基本不等式的性質(zhì)應用,恰當變形是解題的關鍵,屬于中檔題.16、或【解題分析】
用表示出的面積,求得等量關系,聯(lián)立焦距的大小,以及,即可容易求得,則離心率得解.【題目詳解】聯(lián)立解得.所以的面積,所以.而由雙曲線的焦距為知,,所以.聯(lián)立解得或故雙曲線的離心率為或.故答案為:或.【題目點撥】本題考查雙曲線的方程與性質(zhì),考查運算求解能力以及函數(shù)與方程思想,屬中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)不存在實數(shù),使曲線在點處的切線與軸垂直.【解題分析】
(1)分類時,恒成立,時,分離參數(shù)為,引入新函數(shù),利用導數(shù)求得函數(shù)最值即可;(2),導出導函數(shù),問題轉化為在上有解.再用導數(shù)研究的性質(zhì)可得.【題目詳解】解:(1)因為當時,恒成立,所以,若,為任意實數(shù),恒成立.若,恒成立,即當時,,設,,當時,,則在上單調(diào)遞增,當時,,則在上單調(diào)遞減,所以當時,取得最大值.,所以,要使時,恒成立,的取值范圍為.(2)由題意,曲線為:.令,所以,設,則,當時,,故在上為增函數(shù),因此在區(qū)間上的最小值,所以,當時,,,所以,曲線在點處的切線與軸垂直等價于方程在上有實數(shù)解.而,即方程無實數(shù)解.故不存在實數(shù),使曲線在點處的切線與軸垂直.【題目點撥】本題考查不等式恒成立,考查用導數(shù)的幾何意義,由導數(shù)幾何把問題進行轉化是解題關鍵.本題屬于困難題.18、(1)不在,證明見詳解;(2)【解題分析】
(1)假設直線方程,并于拋物線方程聯(lián)立,結合韋達定理,計算,可得,然后驗證可得結果.(2)分別計算線段中垂線的方程,然后聯(lián)立,根據(jù)(1)的條件可得點的軌跡方程,然后可得焦點,結合拋物線定義可得,計算可得結果.【題目詳解】(1)設直線方程,根據(jù)題意可知直線斜率一定存在,則則由所以將代入上式化簡可得,所以則直線方程為,所以直線過定點,所以可知點不在直線上.(2)設線段的中點為線段的中點為則直線的斜率為,直線的斜率為可知線段的中垂線的方程為由,所以上式化簡為即線段的中垂線的方程為同理可得:線段的中垂線的方程為則由(1)可知:所以即,所以點軌跡方程為焦點為,所以當三點共線時,有最大所以【題目點撥】本題考查直線于拋物線的綜合應用,第(1)問中難點在于計算處,第(2)問中關鍵在于得到點的軌跡方程,直線與圓錐曲線的綜合常常要聯(lián)立方程,結合韋達定理,屬難題.19、(Ⅰ);(Ⅱ)【解題分析】
(Ⅰ)利用三角形面積公式以及并結合正弦定理,可得結果.(Ⅱ)根據(jù),可得,然后使用余弦定理,可得結果.【題目詳解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以邊.【題目點撥】本題考查三角形面積公式,正弦定理以及余弦定理的應用,關鍵在于識記公式,屬中檔題.20、(1)(2)【解題分析】
(1)將,利用三角恒等變換轉化為:,,再根據(jù)正弦函數(shù)的性質(zhì)求解,(2)根據(jù),得,又為的內(nèi)角,得到,再根據(jù),利用兩角和與差的余弦公式求解,【題目詳解】(1),,,,即的值域為;(2)由,得,又為的內(nèi)角,所以,又因為在中,,所以,所以.【題目點撥】本題主要考查三角恒等變換和三角函數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版牛糞有機肥生產(chǎn)加工合同規(guī)范4篇
- 二零二五年度新型農(nóng)村電商服務合同規(guī)范文本4篇
- 二零二五年度美容美發(fā)產(chǎn)品研發(fā)及成果轉化合同3篇
- 二零二五年度城市更新改造項目投資合同6篇
- 二零二五年度出國勞務派遣與職業(yè)技能提升培訓合同3篇
- 房貸合同范本(2篇)
- 承包牛羊合同(2篇)
- 2025年度幕墻工程材料供應與配送合同4篇
- 2025年度農(nóng)機維修服務網(wǎng)點加盟管理合同4篇
- 2025年歐派櫥柜出口貿(mào)易合同4篇
- (正式版)CB∕T 4552-2024 船舶行業(yè)企業(yè)安全生產(chǎn)文件編制和管理規(guī)定
- JBT 14588-2023 激光加工鏡頭 (正式版)
- 2024年四川省成都市樹德實驗中學物理八年級下冊期末質(zhì)量檢測試題含解析
- 九型人格與領導力講義
- 廉潔應征承諾書
- 2023年四川省成都市中考物理試卷真題(含答案)
- 泵車述職報告
- 2024年山西文旅集團招聘筆試參考題庫含答案解析
- 恢復中華人民共和國國籍申請表
- 管理期貨的趨勢跟蹤策略 尋找危機阿爾法
- 瀝青化學分析試驗作業(yè)指導書
評論
0/150
提交評論