版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年甘肅省定西市安定區(qū)數(shù)學九年級第一學期期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.若點,,在反比例函數(shù)的圖象上,則y1,y2,y3的大小關系是()A. B. C. D.2.一元二次方程的一次項系數(shù)是()A. B. C. D.3.某公司為調動職工工作積極性,向工會代言人提供了兩個加薪方案,要求他從中選擇:方案一:是12個月后,在年薪20000元的基礎上每年提高500元(第一年年薪20000元);方案二:是6個月后,在半年薪10000元的基礎上每半年提高125元(第6個月末發(fā)薪水10000元);但不管是選哪一種方案,公司都是每半年發(fā)一次工資,如果你是工會代言人,認為哪種方案對員工更有利?()A.方案一 B.方案二C.兩種方案一樣 D.工齡短的選方案一,工齡長的選方案二4.已知圓錐的底面半徑為2cm,母線長為5cm,則圓錐的側面積是()A.20cm2 B.20πcm2 C.10πcm2 D.5πcm25.如圖,△ABC中,AB=AC,∠ABC=70°,點O是△ABC的外心,則∠BOC的度數(shù)為()A.40° B.60° C.70° D.80°6.對于反比例函數(shù),如果當≤≤時有最大值,則當≥8時,有()A.最大值 B.最小值 C.最大值= D.最小值=7.用一個圓心角為120°,半徑為6cm的扇形做成一個圓錐的側面,這個圓錐的高為()A. B. C. D.8.已知(,),下列變形錯誤的是()A. B. C. D.9.下列二次根式中,是最簡二次根式的是()A. B. C. D.10.如圖,一人站在兩等高的路燈之間走動,為人在路燈照射下的影子,為人在路燈照射下的影子.當人從點走向點時兩段影子之和的變化趨勢是()A.先變長后變短 B.先變短后變長C.不變 D.先變短后變長再變短二、填空題(每小題3分,共24分)11.若等腰三角形的兩邊長恰為方程的兩實數(shù)根,則的周長為________________.12.若關于x的方程x2+3x+a=0有一個根為﹣1,則另一個根為________.13.反比例函數(shù)y=的圖象在第一、三象限,則m的取值范圍是_______.14.方程是關于的一元二次方程,則二次項系數(shù)、一次項系數(shù)、常數(shù)項的和為__________.15.如圖,過原點的直線與反比例函數(shù)()的圖象交于,兩點,點在第一象限.點在軸正半軸上,連結交反比例函數(shù)圖象于點.為的平分線,過點作的垂線,垂足為,連結.若是線段中點,的面積為4,則的值為______.16.在等邊三角形中,于點,點分別是上的動點,沿所在直線折疊后點落在上的點處,若是等腰三角形,則____.17.如圖,點、、在上,若,,則________.18.若某斜面的坡度為,則該坡面的坡角為______.三、解答題(共66分)19.(10分)已知二次函數(shù)y=x2+2mx+(m2﹣1)(m是常數(shù)).(1)若它的圖象與x軸交于兩點A,B,求線段AB的長;(2)若它的圖象的頂點在直線y=x+3上,求m的值.20.(6分)如圖1,拋物線y=﹣x2+bx+c的對稱軸為直線x=﹣,與x軸交于點A和點B(1,0),與y軸交于點C,點D為線段AC的中點,直線BD與拋物線交于另一點E,與y軸交于點F.(1)求拋物線的解析式;(2)點P是直線BE上方拋物線上一動點,連接PD、PF,當△PDF的面積最大時,在線段BE上找一點G,使得PG﹣EG的值最小,求出PG﹣EG的最小值.(3)如圖2,點M為拋物線上一點,點N在拋物線的對稱軸上,點K為平面內(nèi)一點,當以A、M、N、K為頂點的四邊形是正方形時,請求出點N的坐標.21.(6分)如圖,在平面直角坐標系中,的頂點坐標分別為,,.(1)將以原點為旋轉中心旋轉得到,畫出旋轉后的.(2)平移,使點的對應點坐標為,畫出平移后的(3)若將繞某一點旋轉可得到,請直接寫出旋轉中心的坐標.22.(8分)如圖,在正方形ABCD中,點M是BC邊上的任一點,連接AM并將線段AM繞M順時針旋轉90°得到線段MN,在CD邊上取點P使CP=BM,連接NP,BP.(1)求證:四邊形BMNP是平行四邊形;(2)線段MN與CD交于點Q,連接AQ,若△MCQ∽△AMQ,則BM與MC存在怎樣的數(shù)量關系?請說明理由.23.(8分)解方程:2x2+3x﹣1=1.24.(8分)為倡導“低碳生活”,常選擇以自行車作為代步工具,如圖1所示是一輛自行車的實物圖.車架檔AC與CD的長分別為45cm,60cm,且它們互相垂直,座桿CE的長為10cm,點A,C,E在同一條直線上,且∠CAB=75°,如圖1.(1)求車架檔AD的長;(1)求車座點E到車架檔AB的距離.(結果精確到1cm.參考數(shù)據(jù):sin75°="0.966,"cos75°=0.159,tan75°=3.731)25.(10分)小李在學習了定理“直角三角形斜邊上的中線等于斜邊的一半”之后做了如下思考,請你幫他完成如下問題:(1)他認為該定理有逆定理:“如果一個三角形某條邊上的中線等于該邊長的一半,那么這個三角形是直角三角形”應該成立.即如圖①,在中,是邊上的中線,若,求證:.(2)如圖②,已知矩形,如果在矩形外存在一點,使得,求證:.(可以直接用第(1)問的結論)(3)在第(2)問的條件下,如果恰好是等邊三角形,請求出此時矩形的兩條鄰邊與的數(shù)量關系.26.(10分)已知拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸.(1)求拋物線的函數(shù)關系式;(2)設點P是直線l上的一個動點,當△PAC的周長最小時,求點P的坐標;(3)在直線l上是否存在點M,使△MAC為等腰三角形?若存在,直接寫出所有符合條件的點M的坐標;若不存在,請說明理由.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】由于反比例函數(shù)的系數(shù)是-8,故把點A、B、C的坐標依次代入反比例函數(shù)的解析式,求出的值即可進行比較.【詳解】解:∵點、、在反比例函數(shù)的圖象上,∴,,,又∵,∴.故選:D.【點睛】本題考查的是反比例函數(shù)的圖象和性質,難度不大,理解點的坐標與函數(shù)圖象的關系是解題的關鍵.2、C【分析】根據(jù)一元二次方程的一般式判斷即可.【詳解】解:該方程的一次項系數(shù)為.故選:【點睛】本題考查的是一元二次方程的項的系數(shù),不是一般式的先化成一般式再判斷.3、B【分析】根據(jù)題意分別計算出方案一和方案二的第n年的年收入,進行大小比較,從而得出選項.【詳解】解:第n年:方案一:12個月后,在年薪20000元的基礎上每年提高500元,第一年:20000元第二年:20500元第三年:21000元第n年:20000+500(n-1)=500n+19500元,方案二:6個月后,在半年薪10000元的基礎上每半年提高125元,第一年:20125元第二年:20375元第三年:20625元第n年:10000+250(n-1)+10000+250(n-1)+125=500n+19625元,由此可以看出方案二年收入永遠比方案一,故選方案二更劃算;故選B.【點睛】本題考查方案選擇,解題關鍵是準確理解題意根據(jù)題意列式比較方案間的優(yōu)劣進行分析.4、C【解析】圓錐的側面積=底面周長×母線長÷2,把相應數(shù)值代入,圓錐的側面積=2π×2×5÷2=10π.故答案為C5、D【分析】首先根據(jù)等腰三角形的性質可得∠A的度數(shù),然后根據(jù)圓周角定理可得∠O=2∠A,進而可得答案.【詳解】解:∵AB=AC,
∴∠ABC=∠ACB=70°,
∴∠A=180°?70°×2=40°,
∵點O是△ABC的外心,
∴∠BOC=40°×2=80°,
故選:D.【點睛】此題主要考查了三角形的外接圓和外心,關鍵是掌握圓周角定理:在同圓或等圓中,同弧所對的圓周角等于圓心角的一半.6、D【解析】解:由當時有最大值,得時,,,反比例函數(shù)解析式為,當時,圖象位于第四象限,隨的增大而增大,當時,最小值為故選D.7、B【分析】根據(jù)題意直接利用圓錐的性質求出圓錐的半徑,進而利用勾股定理得出圓錐的高.【詳解】解:設此圓錐的底面半徑為r,由題意得:,解得r=2cm,故這個圓錐的高為:.故選:B.【點睛】本題主要考查圓錐的計算,熟練掌握圓錐的性質并正確得出圓錐的半徑是解題關鍵.8、B【分析】根據(jù)兩內(nèi)項之積等于兩外項之積對各項分析判斷即可得解.【詳解】解:由,得出,3b=4a,A.由等式性質可得:3b=4a,正確;B.由等式性質可得:4a=3b,錯誤;C.由等式性質可得:3b=4a,正確;D.由等式性質可得:4a=3b,正確.故答案為:B.【點睛】本題考查的知識點是等式的性質,熟記等式性質兩內(nèi)項之積等于兩外項之積是解題的關鍵.9、B【分析】根據(jù)最簡二次根式概念即可解題.【詳解】解:A.=,錯誤,B.是最簡二次根式,正確,C.=3錯誤,D.=,錯誤,故選B.【點睛】本題考查了最簡二次根式的概念,屬于簡單題,熟悉概念是解題關鍵.10、C【分析】連接DF,由題意易得四邊形CDFE為矩形.由DF∥GH,可得.又AB∥CD,得出,設=a,DF=b(a,b為常數(shù)),可得出,從而可以得出,結合可將DH用含a,b的式子表示出來,最后得出結果.【詳解】解:連接DF,已知CD=EF,CD⊥EG,EF⊥EG,∴四邊形CDFE為矩形.∴DF∥GH,∴又AB∥CD,∴.設=a,DF=b,∴,∴∴∴GH=,∵a,b的長是定值不變,∴當人從點走向點時兩段影子之和不變.故選:C.【點睛】本題考查了相似三角形的應用:利用桿或直尺測量物體的高度就是利用桿或直尺的高(長)作為三角形的邊,利用視點和盲區(qū)的知識構建相似三角形,用相似三角形對應邊的比相等的性質求物體的高度.二、填空題(每小題3分,共24分)11、1【分析】先求出一元二次方程的解,再進行分類討論求周長即可.【詳解】,解得:,,當?shù)妊切蔚娜叿謩e為3,3,6時,3+3=6,不滿足三邊關系,故該等腰三角形不存在;當?shù)妊切蔚娜叿謩e為6,6,3時,滿足三邊關系,該等腰三角形的周長為:6+6+3=1.故答案為:1.【點睛】本題考查一元二次方程的解法與等腰三角形的結合,做題時需注意等腰三角形中邊的分類討論及判斷是否滿足三邊關系.12、-2【解析】試題解析:由韋達定理可得,故答案為13、m>1【分析】由于反比例函數(shù)y=的圖象在一、三象限內(nèi),則m-1>0,解得m的取值范圍即可.【詳解】解:由題意得,反比例函數(shù)y=的圖象在一、三象限內(nèi),則m-1>0,解得m>1.故答案為m>1.【點睛】本題考查了反比例函數(shù)的性質,解題的關鍵是熟練的掌握反比例函數(shù)的性質.14、9【分析】根據(jù)一元二次方程的定義可確定m的值,即可得二次項系數(shù)、一次項系數(shù)、常數(shù)項的值,進而可得答案.【詳解】∵方程是關于的一元二次方程,∴m2-2=2,m+2≠0,解得:m=2,∴二次項系數(shù)為4,一次項系數(shù)為4,常數(shù)項為1,∴二次項系數(shù)、一次項系數(shù)、常數(shù)項的和為4+4+1=9,故答案為:9【點睛】本題考查一元二次方程的定義,只含有一個未知數(shù)(一元),并且未知數(shù)項的最高次數(shù)是2(二次)的整式方程叫做一元二次方程;一元二次方程經(jīng)過整理都可化成一般形式ax2+bx+c=0(a≠0),其中ax2叫做二次項,a是二次項系數(shù);bx叫做一次項,b是一次項系數(shù);c叫作做常數(shù)項.注意不要漏掉a≠0的條件,避免漏解.15、【分析】連接OE,CE,過點A作AF⊥x軸,過點D作DH⊥x軸,過點D作DG⊥AF;由AB經(jīng)過原點,則A與B關于原點對稱,再由BE⊥AE,AE為∠BAC的平分線,
可得AD∥OE,進而可得S△ACE=S△AOC;設點A(m,),由已知條件D是線段AC中點,DH∥AF,可得2DH=AF,則點D(2m,),證明△DHC≌△AGD,得到S△HDC=S△ADG,所以S△AOC=S△AOF+S梯形AFHD+S△HDC=k+k+=8;即可求解;【詳解】解:連接OE,CE,過點A作AF⊥x軸,過點D作DH⊥x軸,過點D作DG⊥AF,
∵過原點的直線與反比例函數(shù)y=(k>0)的圖象交于A,B兩點,
∴A與B關于原點對稱,
∴O是AB的中點,
∵BE⊥AE,
∴OE=OA,
∴∠OAE=∠AEO,
∵AE為∠BAC的平分線,
∴∠DAE=∠AEO,
∴AD∥OE,
∴S△ACE=S△AOC,
∵D是線段AC中點,的面積為4,
∴AD=DC,S△ACE=S△AOC=8,
設點A(m,),∵D是線段AC中點,DH∥AF,
∴2DH=AF,
∴點D(2m,),∵CH∥GD,AG∥DH,
∴∠ADG=∠DCH,∠DAG=∠CDH,在△AGD和△DHC中,
∴S△HDC=S△ADG,
∵S△AOC=S△AOF+S梯形AFHD+S△HDC=k+×(DH+AF)×FH+S△HDC=k+k+=8;
∴k=8,
∴k=.
故答案為.【點睛】本題考查反比例函數(shù)k的意義;借助直角三角形和角平分線,將△ACE的面積轉化為△AOC的面積是解題的關鍵.16、,或【分析】根據(jù)等邊三角形的性質,得到CD=3,BD=,∠CBD=30°,由折疊的性質得到,,,由是等腰三角形,則可分為三種情況就那些討論:①,②,③,分別求出答案,即可得到答案.【詳解】解:∵在等邊三角形中,,∴CD=3,BD=,∠CBD=30°,∵沿所在直線折疊后點落在上的點處,∴,,,由是等腰三角形,則①當時,如圖,∴,∴,∴是等腰直角三角形,∴,,∵,∴,解得:;∴;②當,此時點與點D重合,如圖,∴;③當,此時點F與點D重合,如圖,∴,∴;綜合上述,的長度為:,或;故答案為:,或.【點睛】本題考查了等邊三角形的性質,折疊的性質,以及等腰三角形的性質,熟練運用折疊的性質是本題的關鍵.注意利用分類討論的思想進行解題.17、【分析】連接OB,先根據(jù)OA=OB計算出,再根據(jù)計算出,進而計算出,最后根據(jù)OB=OC得出即得.【詳解】解:連接OB,如下圖:∴∴,∵∴∴故答案為:【點睛】本題考查了圓的性質及等腰三角形的性質,解題關鍵是熟知同圓的半徑相等,同弧所對的圓周角是圓心角的一半.18、30°【分析】根據(jù)坡度與坡比之間的關系即可得出答案.【詳解】∵∴坡面的坡角為故答案為:【點睛】本題主要考查坡度與坡角,掌握坡度與坡角之間的關系是解題的關鍵.三、解答題(共66分)19、AB=2;(2)m=1.【分析】(1)令y=0求得拋物線與x軸的交點,從而求得兩交點之間的距離即可;(2)用含m的式子表示出頂點坐標,然后代入一次函數(shù)的解析式即可求得m的值.【詳解】(1)令y=x2+2mx+(m2﹣1)=0,∴(x+m+1)(x+m﹣1)=0,解得:x1=﹣m﹣1,x2=﹣m+1,∴AB=|x1﹣x2|=|﹣m﹣1﹣(﹣m+1)|=2;(2)∵二次函數(shù)y=x2+2mx+(m2﹣1),∴頂點坐標為(﹣2m,),即:(﹣2m,﹣1),∵圖象的頂點在直線y=x+3上,∴﹣×(﹣2m)+3=﹣1,解得:m=1.【點睛】本題考查了解二次函數(shù)的問題,掌握二次函數(shù)的性質以及解二次函數(shù)的方法是解題的關鍵.20、(1)y=﹣x2+﹣x+2;(2);(3)N點的坐標為:或()或(﹣)或(﹣)或(﹣)或或(﹣)【分析】(1)根據(jù)對稱軸公式列出等式,帶點到拋物線列出等式,解出即可;(2)先求出A、B、C的坐標,從而求出D的坐標算出BD的解析式,根據(jù)題意畫出圖形,設出P、G的坐標代入三角形的面積公式得出一元二次方程,聯(lián)立方程組解出即可;(3)分類討論①當AM是正方形的邊時,(ⅰ)當點M在y軸左側時(N在下方),(ⅱ)當點M在y軸右側時,②當AM是正方形的對角線時,分別求出結果綜合即可.【詳解】(1)拋物線y=﹣x2+bx+c的對稱軸為直線x=﹣,與x軸交于點B(1,0).∴,解得,∴拋物線的解析式為:y=﹣x2+﹣x+2;(2)拋物線y=﹣x2﹣x+2與x軸交于點A和點B,與y軸交于點C,∴A(﹣1,0),B(1,0),C(0,2).∵點D為線段AC的中點,∴D(﹣2,1),∴直線BD的解析式為:,過點P作y軸的平行線交直線EF于點G,如圖1,設點P(x,),則點G(x,).∴,當x=﹣時,S最大,即點P(﹣,),過點E作x軸的平行線交PG于點H,則tan∠EBA=tan∠HEG=,∴,故為最小值,即點G為所求.聯(lián)立解得,(舍去),故點E(﹣,),則PG﹣的最小值為PH=.(3)①當AM是正方形的邊時,(ⅰ)當點M在y軸左側時(N在下方),如圖2,當點M在第二象限時,過點A作y軸的平行線GH,過點M作MG⊥GH于點G,過點N作HN⊥GH于點H,∴∠GMA+∠GAM=90°,∠GAM+∠HAN=90°,∴∠GMA=∠HAN,∵∠AGM=∠NHA=90°,AM=AN,∴△AGM≌△NHA(AAS),∴GA=NH=1﹣,AH=GM,即y=﹣,解得x=,當x=時,GM=x﹣(﹣1)=,yN=﹣AH=﹣GM=,∴N(,).當x=時,同理可得N(,),當點M在第三象限時,同理可得N(,).(ⅱ)當點M在y軸右側時,如圖3,點M在第一象限時,過點M作MH⊥x軸于點H設AH=b,同理△AHM≌△MGN(AAS),則點M(﹣1+b,b﹣).將點M的坐標代入拋物線解析式可得:b=(負值舍去)yN=y(tǒng)M+GM=y(tǒng)M+AH=,∴N(﹣,).當點M在第四象限時,同理可得N(﹣,-).②當AM是正方形的對角線時,當點M在y軸左側時,過點M作MG⊥對稱軸于點G,設對稱軸與x軸交于點H,如圖1.∵∠AHN=∠MGN=90°,∠NAH=∠MNG,MN=AN,∴△AHN≌△NGN(AAS),設點N(﹣,π),則點M(﹣,),將點M的坐標代入拋物線解析式可得,(舍去),∴N(,),當點M在y軸右側時,同理可得N(,).綜上所述:N點的坐標為:或()或(﹣)或(﹣)或(﹣)或或(﹣).【點睛】本題考查二次函數(shù)與一次函數(shù)的綜合題型,關鍵在于熟練掌握設數(shù)法,合理利用相似全等等基礎知識.21、(1)見解析;(2)見解析;(3)旋轉中心坐標為.【分析】(1)依據(jù)旋轉的性質確定出A1,B1,C1,然后用線段吮吸連接即可得到△A1B1C1;(2)依據(jù)點A的對應點A2坐標為(3,-3),確定出平移的方式,然后根據(jù)平移的性質即可畫出平移后的△A2B2C2;(3)連接對應點的連線可發(fā)現(xiàn)旋轉中心.【詳解】解:(1)如圖所示:即為所求;(2)如圖所示:即為所示;(3)如圖,旋轉中心坐標為.【點睛】本題考查了作圖-旋轉變換:根據(jù)旋轉的性質可知,對應角都相等都等于旋轉角,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形.本題也考查了平移作圖.22、(1)證明見解析;(2)BM=MC.理由見解析.【分析】(1)根據(jù)正方形的性質可得AB=BC,∠ABC=∠C,然后利用“邊角邊”證明△ABM和△BCP全等,根據(jù)全等三角形對應邊相等可得AM=BP,∠BAM=∠CBP,再求出AM⊥BP,從而得到MN∥BP,然后根據(jù)一組對邊平行且相等的四邊形是平行四邊形證明即可;(2)根據(jù)同角的余角相等求出∠BAM=∠CMQ,然后求出△ABM和△MCQ相似,根據(jù)相似三角形對應邊成比例可得,再求出△AMQ∽△ABM,根據(jù)相似三角形對應邊成比例可得,從而得到,即可得解.【詳解】(1)證明:在正方形ABCD中,AB=BC,∠ABC=∠C,在△ABM和△BCP中,,∴△ABM≌△BCP(SAS),∴AM=BP,∠BAM=∠CBP,∵∠BAM+∠AMB=90°,∴∠CBP+∠AMB=90°,∴AM⊥BP,∵AM并將線段AM繞M順時針旋轉90°得到線段MN,∴AM⊥MN,且AM=MN,∴MN∥BP,∴四邊形BMNP是平行四邊形;(2)解:BM=MC.理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°,∴∠BAM=∠CMQ,又∵∠ABC=∠C=90°,∴△ABM∽△MCQ,∴,∵△MCQ∽△AMQ,∴△AMQ∽△ABM,∴,∴,∴BM=MC.23、.【分析】找出a,b,c的值,代入求根公式即可求出解.【詳解】解:這里a=2,b=3,c=﹣1,∵△=9+8=17,∴x=.考點:解一元二次方程-公式法.24、(1)75cm(1)2cm【解析】解:(1)在Rt△ACD中,AC=45,CD=60,∴AD=,∴車架檔AD的長為75cm.(1)過點E作EF⊥AB,垂足為點F,距離EF=AEsin75°=(45+10)sin75°≈61.7835≈2.∴車座點E到車架檔AB的距離是2cm.(1)在Rt△ACD中利用勾股定理求AD即可.(1)過點E作EF⊥AB,在Rt△EFA中,利用三角函數(shù)求EF=AEsin75°,即可得到答案.25、(1)詳見解析;(2)詳見解析;(3)【分析】(1)利用等腰三角形的性質和三角形內(nèi)角和即可得出結論;
(2)先判斷出OE=AC,即可得出OE=BD,即可得出結論;
(3)先判斷出△ABE是底角是30°的等腰三角形,即可構造直角三角形即可得出結論.【詳解】(1)∵AD=BD,
∴∠B=∠BAD,
∵AD=CD,
∴∠C=∠CAD,
在△ABC中,∠B+∠C+∠BAC=180°,
∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°
∴∠B+∠C=90°,
∴∠BAC=90°,(2)如圖②,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個體草莓經(jīng)銷商合作合同書版B版
- 智慧教育與學生自主學習能力的提升探索
- 2025年度高空作業(yè)安全責任免除協(xié)議范本兩份4篇
- 教育變革背景下學生自主學習的挑戰(zhàn)與機遇
- 2025年度裝配式建筑混凝土構件生產(chǎn)與承包合同范本4篇
- 校園心理健康課程的學生反饋分析
- 推動校園文化建設學校藝術及文化設施的采購計劃
- 環(huán)保材料在建設綠色校園中的應用研究
- GRC施工合同范本
- 技術創(chuàng)新引領下的工業(yè)互聯(lián)網(wǎng)平臺發(fā)展趨勢分析
- 新媒體論文開題報告范文
- 2024年云南省中考數(shù)學試題含答案解析
- 國家中醫(yī)藥管理局發(fā)布的406種中醫(yī)優(yōu)勢病種診療方案和臨床路徑目錄
- 2024年全國甲卷高考化學試卷(真題+答案)
- 汽車修理廠管理方案
- 人教版小學數(shù)學一年級上冊小學生口算天天練
- (正式版)JBT 5300-2024 工業(yè)用閥門材料 選用指南
- 三年級數(shù)學添括號去括號加減簡便計算練習400道及答案
- 蘇教版五年級上冊數(shù)學簡便計算300題及答案
- 澳洲牛肉行業(yè)分析
- 計算機江蘇對口單招文化綜合理論試卷
評論
0/150
提交評論