版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023-2024學年江蘇省泰州市泰州中學數(shù)學九上期末調(diào)研試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,矩形ABCD中,BC=4,CD=2,O為AD的中點,以AD為直徑的弧DE與BC相切于點E,連接BD,則陰影部分的面積為()A.π B. C.π+2 D.+42.若關于的一元二次方程的一個根是,則的值是()A.2011 B.2015 C.2019 D.20203.二次函數(shù)的圖象如右圖所示,若,,則()A., B., C., D.,4.將拋物線向上平移1個單位長度,再向右平移3個單位長度后,得到的拋物線的解析式為()A. B. C. D.5.如圖,在Rt△ABC中,∠C=90°,點P是邊AC上一點,過點P作PQ∥AB交BC于點Q,D為線段PQ的中點,BD平分∠ABC,以下四個結(jié)論①△BQD是等腰三角形;②BQ=DP;③PA=QP;④=(1+)2;其中正確的結(jié)論的個數(shù)()A.1個 B.2個 C.3個 D.4個6.已知如圖:為估計池塘的寬度,在池塘的一側(cè)取一點,再分別取、的中點、,測得的長度為米,則池塘的寬的長為()A.米 B.米 C.米 D.米7.如圖,在一張矩形紙片中,對角線,點分別是和的中點,現(xiàn)將這張紙片折疊,使點落在上的點處,折痕為,若的延長線恰好經(jīng)過點,則點到對角線的距離為().A. B. C. D.8.如圖,直線,等腰的直角頂點在上,頂點在上,若,則()A.31° B.45° C.30° D.59°9.一元二次方程的二次項系數(shù)、一次項系數(shù)分別是A.3, B.3,1 C.,1 D.3,610.如圖,點是上的點,,則是()
A. B. C. D.二、填空題(每小題3分,共24分)11.二次函數(shù)y=ax2+4ax+c的最大值為4,且圖象過點(-3,0),則該二次函數(shù)的解析式為____________.12.從一副沒有“大小王”的撲克牌中隨機抽取一張,點數(shù)為“”的概率是________.13.如圖,甲、乙兩樓之間的距離為30米,從甲樓測得乙樓頂仰角為α=30°,觀測乙樓的底部俯角為β=45°,乙樓的高h=_____米(結(jié)果保留整數(shù)≈1.7,≈1.4).14.如圖,,,與交于點,則是相似三角形共有__________對.15.計算:____________16.如圖,矩形中,,點在邊上,且,的延長線與的延長線相交于點,若,則______.17.如圖,矩形中,,,是邊上的一點,且,點在矩形所在的平面中,且,則的最大值是_________.18.已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對應值如表,x6.176.186.196.20y﹣0.03﹣0.010.020.04則方程ax2+bx+c=0的一個解的范圍是_____.三、解答題(共66分)19.(10分)定義:如圖1,點P為∠AOB平分線上一點,∠MPN的兩邊分別與射線OA,OB交于M,N兩點,若∠MPN繞點P旋轉(zhuǎn)時始終滿足OM?ON=OP2,則稱∠MPN是∠AOB的“相關角”.(1)如圖1,已知∠AOB=60°,點P為∠AOB平分線上一點,∠MPN的兩邊分別與射線OA,OB交于M,N兩點,且∠MPN=150°.求證:∠MPN是∠AOB的“相關角”;(2)如圖2,已知∠AOB=α(0°α90°),OP=3,若∠MPN是∠AOB的“相關角”,連結(jié)MN,用含α的式子分別表示∠MPN的度數(shù)和△MON的面積;(3)如圖3,C是函數(shù)(x0)圖象上的一個動點,過點C的直線CD分別交x軸和y軸于點A,B兩點,且滿足BC=3CA,∠AOB的“相關角”為∠APB,請直接寫出OP的長及相應點P的坐標.20.(6分)如圖,拋物線(a≠0)經(jīng)過A(-1,0),B(2,0)兩點,與y軸交于點C.(1)求拋物線的解析式及頂點D的坐標;(2)點P在拋物線的對稱軸上,當△ACP的周長最小時,求出點P的坐標;(3)點N在拋物線上,點M在拋物線的對稱軸上,是否存在以點N為直角頂點的Rt△DNM與Rt△BOC相似,若存在,請求出所有符合條件的點N的坐標;若不存在,請說明理由.21.(6分)⊙O中,直徑AB和弦CD相交于點E,已知AE=1cm,EB=5cm,且,求CD的長.22.(8分)已知方程是關于的一元二次方程.(1)求證:方程總有兩個實數(shù)根;(2)若方程的兩個根之和等于兩根之積,求的值.23.(8分)如圖,點,在反比例函數(shù)的圖象上,作軸于點.⑴求反比例函數(shù)的表達式;⑵若的面積為,求點的坐標.24.(8分)閱讀材料,解答問題:觀察下列方程:①;②;③;…;(1)按此規(guī)律寫出關于x的第4個方程為,第n個方程為;(2)直接寫出第n個方程的解,并檢驗此解是否正確.25.(10分)同圓的內(nèi)接正三角形與外切正三角形的周長比是_____.26.(10分)(1)計算:tan31°sin61°+cos231°-tan45°(2)解方程:x2﹣2x﹣1=1.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】連接OE交BD于F,如圖,利用切線的性質(zhì)得到OE⊥BC,再證明四邊形ODCE和四邊形ABEO都是正方形得到BE=2,∠DOE=∠BEO=90°,易得△ODF≌△EBF,所以S△ODF=S△EBF,然后根據(jù)扇形的面積公式,利用陰影部分的面積=S扇形EOD計算即可.【詳解】連接OE交BD于F,如圖,∵以AD為直徑的半圓O與BC相切于點E,∴OE⊥BC.∵四邊形ABCD為矩形,OA=OD=2,而CD=2,∴四邊形ODCE和四邊形ABEO都是正方形,∴BE=2,∠DOE=∠BEO=90°.∵∠BFE=∠DFO,OD=BE,∴△ODF≌△EBF(AAS),∴S△ODF=S△EBF,∴陰影部分的面積=S扇形EOD.故選:A.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關系.也考查了矩形的性質(zhì)和扇形面積公式.2、C【分析】根據(jù)方程解的定義,求出a-b,利用作圖代入的思想即可解決問題.【詳解】∵關于x的一元二次方程的解是x=?1,∴a?b+4=0,∴a?b=-4,∴2015?(a?b)=2215?(-4)=2019.故選C.【點睛】此題考查一元二次方程的解,解題關鍵在于掌握運算法則.3、A【分析】由于當x=2.5時,,再根據(jù)對稱軸得出b=-2a,即可得出5a+4c>0,因此可以判斷M的符號;由于當x=1時,y=a+b+c>0,因此可以判斷N的符號;【詳解】解:∵當x=2.5時,y=,∴25a+10b+4c>0,,∴b=-2a,
∴25a-20a+4c>0,即5a+4c>0,
∴M>0,
∵當x=1時,y=a+b+c>0,
∴N>0,
故選:A.【點睛】此題主要考查了二次函數(shù)圖象與系數(shù)的關系,解題的關鍵是注意數(shù)形結(jié)合思想的應用.4、B【分析】根據(jù)函數(shù)圖象向上平移加,向右平移減,可得函數(shù)解析式.【詳解】解:將拋物線向上平移1個單位長度,再向右平移3個單位長度后,得到的拋物線的解析式為:.故選:B.【點睛】本題考查了二次函數(shù)圖象與幾何變換,函數(shù)圖象的平移規(guī)律是:左加右減,上加下減.5、C【分析】利用平行線的性質(zhì)角、平分線的定義、相似三角形的判定和性質(zhì)一一判斷即可.【詳解】解:∵PQ∥AB,∴∠ABD=∠BDQ,又∠ABD=∠QBD,∴∠QBD=∠BDQ,∴QB=QD,∴△BQD是等腰三角形,故①正確,∵QD=DF,∴BQ=PD,故②正確,∵PQ∥AB,∴=,∵AC與BC不相等,∴BQ與PA不一定相等,故③錯誤,∵∠PCQ=90°,QD=PD,∴CD=QD=DP,∵△ABC∽△PQC,∴=()2=()2=(1+)2,故④正確,故選:C.【點睛】本題考查的是相似三角形的判定和性質(zhì),掌握相似三角形的判定定理和性質(zhì)定理是解題的關鍵.6、C【分析】根據(jù)三角形中位線定理可得DE=BC,代入數(shù)據(jù)可得答案.【詳解】解:∵線段AB,AC的中點為D,E,
∴DE=BC,
∵DE=20米,
∴BC=40米,
故選:C.【點睛】此題主要考查了三角形中位線定理,關鍵是掌握三角形的中位線平行于第三邊,并且等于第三邊的一半.7、B【分析】設DH與AC交于點M,易得EG為△CDH的中位線,所以DG=HG,然后證明△ADG≌△AHG,可得AD=AH,∠DAG=∠HAG,可推出∠BAH=∠HAG=∠DAG=30°,然后設BH=a,則BC=AD=AH=2a,利用勾股定理建立方程可求出a,然后在Rt△AGM中,求出GM,AG,再求斜邊AM上的高即為G到AC的距離.【詳解】如圖,設DH與AC交于點M,過G作GN⊥AC于N,∵E、F分別是CD和AB的中點,∴EF∥BC∴EG為△CDH的中位線∴DG=HG由折疊的性質(zhì)可知∠AGH=∠B=90°∴∠AGD=∠AGH=90°在△ADG和△AHG中,∵DG=HG,∠AGD=∠AGH,AG=AG∴△ADG≌△AHG(SAS)∴AD=AH,AG=AB,∠DAG=∠HAG由折疊的性質(zhì)可知∠HAG=∠BAH,∴∠BAH=∠HAG=∠DAG=∠BAD=30°設BH=a,在Rt△ABH中,∠BAH=30°∴AH=2a∴BC=AD=AH=2a,AB=在Rt△ABC中,AB2+BC2=AC2即解得∴DH=2GH=2BH=,AG=AB=∵CH∥AD∴△CHM∽△ADM∴∴AM=AC=,HM=DH=∴GM=GH-HM=在Rt△AGM中,∴故選B.【點睛】本題考查了矩形的性質(zhì),折疊的性質(zhì),全等三角形與相似三角形的判定與性質(zhì),以及勾股定理的應用,解題的關鍵是求出∠BAH=30°,再利用勾股定理求出邊長.8、A【分析】過點B作BD//l1,,再由平行線的性質(zhì)即可得出結(jié)論.【詳解】解:過點B作BD//l1,則∠α=∠CBD.
∵,
∴BD//,
∴∠β=∠DBA,
∵∠CBD+∠DBA=45°,
∴∠α+∠β=45°,∵∴∠α=45°-∠β=31°.
故選A.【點睛】本題考查的是平行線的性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出平行線是解答此題的關鍵.9、A【分析】根據(jù)一元二次方程的定義解答.【詳解】3x2?6x+1=0的二次項系數(shù)是3,一次項系數(shù)是?6,常數(shù)項是1.故答案選A.【點睛】本題考查的知識點是一元二次方程的一般形式,解題的關鍵是熟練的掌握一元二次方程的一般形式.10、A【分析】本題利用弧的度數(shù)等于所對的圓周角度數(shù)的2倍求解優(yōu)弧度數(shù),繼而求解劣弧度數(shù),最后根據(jù)弧的度數(shù)等于圓心角的度數(shù)求解本題.【詳解】如下圖所示:∵∠BDC=120°,∴優(yōu)弧的度數(shù)為240°,∴劣弧度數(shù)為120°.∵劣弧所對的圓心角為∠BOC,∴∠BOC=120°.故選:A.【點睛】本題考查圓的相關概念,解題關鍵在于清楚圓心角、圓周角、弧各個概念之間的關系.二、填空題(每小題3分,共24分)11、y=-4x2-16x-12【解析】∵拋物線的對稱軸為直線x==﹣2,∴拋物線的頂點坐標為(﹣2,4),又∵拋物線過點(﹣3,0),∴,解得:a=﹣4,c=﹣12,則拋物線的解析式為y=-4x2-16x-12.故答案為y=-4x2-16x-12.【點睛】本題考查用待定系數(shù)法求二次函數(shù)解析式,解此題的關鍵在于先根據(jù)頂點坐標與函數(shù)系數(shù)的關系,求得頂點坐標,再用待定系數(shù)法求函數(shù)解析式即可.12、【分析】讓點數(shù)為6的撲克牌的張數(shù)除以沒有大小王的撲克牌總張數(shù)即為所求的概率.【詳解】∵沒有大小王的撲克牌共52張,其中點數(shù)為6的撲克牌4張,
∴隨機抽取一張點數(shù)為6的撲克,其概率是
故答案為【點睛】本題考查的是隨機事件概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.13、1【分析】根據(jù)正切的定義求出CD,根據(jù)等腰直角三角形的性質(zhì)求出BD,結(jié)合圖形計算,得到答案.【詳解】解:在Rt△ACD中,tan∠CAD=,∴CD=AD?tan∠CAD=30×tan30°=10≈17,在Rt△ABD中,∠DAB=45°,∴BD=AD=30,∴h=CD+BD≈1,故答案為:1.【點睛】本題考查解直角三角形的應用,要注意利用已知線段和角通過三角關系求解.14、6【分析】圖中三角形有:△AEG,△ADC,△CFG,△CBA,因為,,所以△AEG∽△ADC∽△CFG∽△CBA,有6中組合,據(jù)此可得出答案.【詳解】圖中三角形有:△AEG,△ADC,△CFG,△CBA,∵,,∴△AEG∽△ADC∽△CFG∽△CBA共有6個組合分別為:△AEG∽△ADC,△AEG∽△CFG,△AEG∽△CBA,△ADC∽△CFG,△ADC∽△CBA,△CFG∽△CBA故答案為6.【點睛】本題考查的是相似三角形的判定,熟練掌握相似三角形的判定方法是解題的關鍵.15、1【分析】根據(jù)分式混合運算的法則計算即可.【詳解】解:原式====1,故答案為:1.【點睛】本題考查了分式混合運算,主要考查學生的計算能力,掌握分式混合運算的法則是解題的關鍵.16、【分析】設BC=EC=a,根據(jù)相似三角形得到,求出a的值,再利用tanA即可求解.【詳解】設BC=EC=a,∵AB∥CD,∴△ABF∽△ECF,∴,即解得a=(-舍去)∴tanF==故答案為:.【點睛】此題主要考查相似三角形的判定與性質(zhì),解題的關鍵是熟知矩形的性質(zhì)及正切的定義.17、5+.【分析】由四邊形是矩形得到內(nèi)接于,利用勾股定理求出直徑BD的長,由確定點P在上,連接MO并延長,交于一點即為點P,此時PM最長,利用勾股定理求出OM,再加上OP即可得到PM的最大值.【詳解】連接BD,∵四邊形ABCD是矩形,∴∠BAD=∠BCD=90,AD=BC=8,∴BD=10,以BD的中點O為圓心5為半徑作,∵,∴點P在上,連接MO并延長,交于一點即為點P,此時PM最長,且OP=5,過點O作OH⊥AD于點H,∴AH=AD=4,∵AM=2,∴MH=2,∵點O、H分別為BD、AD的中點,∴OH為△ABD的中位線,∴OH=AB=3,∴OM=,∴PM=OP+OM=5+.故答案為:5+.【點睛】此題考查矩形的性質(zhì),勾股定理,圓內(nèi)接四邊形的性質(zhì),確定PM的位置是重點,再分段求出OM及OP的長,即可進行計算.18、6.18<x<6.1【分析】根據(jù)表格中自變量、函數(shù)的值的變化情況,得出當y=0時,相應的自變量的取值范圍即可.【詳解】由表格數(shù)據(jù)可得,當x=6.18時,y=﹣0.01,當x=6.1時,y=0.02,∴當y=0時,相應的自變量x的取值范圍為6.18<x<6.1,故答案為:6.18<x<6.1.【點睛】本題考查了用圖象法求一元二次方程的近似根,解題的關鍵是找到y(tǒng)由正變?yōu)樨摃r,自變量的取值即可.三、解答題(共66分)19、(1)見解析;(2);(3),P點坐標為或【分析】(1)由角平分線求出∠MOP=∠NOP=∠AOB=30°,再證出∠OMP=∠OPN,證明△MOP∽△PON,即可得出結(jié)論;(2)由∠MPN是∠AOB的“相關角”,判斷出△MOP∽△PON,得出∠OMP=∠OPN,即可得出∠MPN=180°﹣α;過點M作MH⊥OB于H,由三角形的面積公式得出:S△MON=ON?MH,即可得出結(jié)論;(3)設點C(a,b),則ab=3,過點C作CH⊥OA于H;分兩種情況:①當點B在y軸正半軸上時;當點A在x軸的負半軸上時,BC=3CA不可能;當點A在x軸的正半軸上時;先求出,由平行線得出△ACH∽△ABO,得出比例式:,得出OB,OA,求出OA?OB,根據(jù)∠APB是∠AOB的“相關角”,得出OP,即可得出點P的坐標;②當點B在y軸的負半軸上時;同①的方法即可得出結(jié)論.【詳解】(1)證明:∵∠AOB=60°,P為∠AOB的平分線上一點,∴∠AOP=∠BOP=∠AOB=30°,∵∠MOP+∠OMP+∠MPO=180°,∴∠OMP+∠MPO=150°,∵∠MPN=150°,∴∠MPO+∠OPN=150°,∴∠OMP=∠OPN,∴△MOP∽△PON,∴,∴OP2=OM?ON,∴∠MPN是∠AOB的“相關角”;(2)解:∵∠MPN是∠AOB的“相關角”,∴OM?ON=OP2,∴,∵P為∠AOB的平分線上一點,∴∠MOP=∠NOP=α,∴△MOP∽△PON,∴∠OMP=∠OPN,∴∠MPN=∠OPN+∠OPM=∠OMP+∠OPM=180°﹣α,即∠MPN=180°﹣α;過點M作MH⊥OB于H,如圖2,則S△MON=ON?MH=ON?OMsinα=OP2?sinα,∵OP=3,∴S△MON=sinα;(3)設點C(a,b),則ab=4,過點C作CH⊥OA于H;分兩種情況:①當點B在y軸正半軸上時;Ⅰ、當點A在x軸的負半軸上,如圖3所示:BC=3CA不可能,Ⅱ、當點A在x軸的正半軸上時,如圖4所示:∵BC=3CA,∴,∵CHOB,∴△ACH∽△ABO,∴,∴,∴OB=4b,OA=a,∴OA?OB=a?4b=ab=,∵∠APB是∠AOB的“相關角”,∴OP2=OA?OB,∴,∵∠AOB=90°,OP平分∠AOB,∴點P的坐標為:;②當點B在y軸的負半軸上時,如圖5所示:∵BC=3CA,∴AB=2CA,∴,∵CHOB,∴△ACH∽△ABO,∴,∴∴OB=2b,OA=a,∴OA?OB=a?2b=ab=,∵∠APB是∠AOB的“相關角”,∴OP2=OA?OB,∴,∵∠AOB=90°,OP平分∠AOB,∴點P的坐標為:;綜上所述:點P的坐標為:或.【點睛】本題考查反比例函數(shù)與幾何綜合,掌握數(shù)形結(jié)合和分類討論的思想是解題的關鍵.20、(1),D(,);(2)P(,);(3)存在.N(,)或(,)或(,)或(,).【解析】試題分析:(1)利用待定系數(shù)法求出拋物線解析式;(2)確定出當△ACP的周長最小時,點P就是BC和對稱軸的交點,利用兩點間的距離公式計算即可;(3)作出輔助線,利用tan∠MDN=2或,建立關于點N的橫坐標的方程,求出即可.試題解析:(1)由于拋物線(a≠0)經(jīng)過A(-1,0),B(2,0)兩點,因此把A、B兩點的坐標代入(a≠0),可得:;解方程組可得:,故拋物線的解析式為:,∵=,所以D的坐標為(,).(2)如圖1,設P(,k),∵,∴C(0,-1),∵A(-1,0),B(2,0),∴A、B兩點關于對稱軸對稱,連接CB交對稱軸于點P,則△ACP的周長最小.設直線BC為y=kx+b,則:,解得:,∴直線BC為:.當x=時,=,∴P(,);(3)存在.如圖2,過點作NF⊥DM,∵B(2,0),C(0,﹣1),∴OB=2,OC=1,∴tan∠OBC=,tan∠OCB==2,設點N(m,),∴FN=|m﹣|,F(xiàn)D=||=||,∵Rt△DNM與Rt△BOC相似,∴∠MDN=∠OBC,或∠MDN=∠OCB;①當∠MDN=∠OBC時,∴tan∠MDN==,∴,∴m=(舍)或m=或m=,∴N(,)或(,);②當∠MDN=∠OCB時,∴tan∠MDN==2,∴,∴m=(舍)或m=或m=,∴N(,)或(,);∴符合條件的點N的坐標(,)或(,)或(,)或(,).考點:二次函數(shù)綜合題;相似三角形的判定與性質(zhì);分類討論;壓軸題.21、2(cm)【分析】先求出圓的半徑,再通過作OP⊥CD于P,求出OP長,再根據(jù)勾股定理求出DP長,最后利用垂徑定理確定CD長度.【詳解】解:作OP⊥CD于P,連接OD,∴CP=PD,∵AE=1,EB=5,∴AB=6,∴OE=2,在Rt△OPE中,OP=OE?sin∠DEB=,∴PD==,∴CD=2PD=2(cm).【點睛】本題考查了垂徑定理,勾股定理及直角三角形的性質(zhì),根據(jù)題意作出輔助線,構(gòu)造直角三角形及構(gòu)造出符合垂徑定理的條件是解答此題的關鍵.22、(1)詳見解析;(2)1.【分析】(1)根據(jù)一元二次方程根的判別式,即可得到結(jié)論;(2)由一元二次方程根與系數(shù)的關系,得,,進而得到關于m的方程,即可求解.【詳解】(1)∵方程是關于的一元二次方程,∴,∵,∴方程總有兩個實根;(2)設方程的兩根為,,則,根據(jù)題意得:,解得:,(舍去),∴的值為1.【點睛】本題主要考查一元二次
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 石材供應購銷合同
- 食品材料采購合同書
- 酒駕者自律書
- 智能化濕地監(jiān)控系統(tǒng)招標
- 花卉育苗合作方案
- 巖棉板采購合同示例
- 青春守護堅守底線抵制早戀
- 代理合同補充協(xié)議要點
- 簡易分包合同勞務部分
- 催辦房屋買賣合同辦理事宜
- 腎破裂保守治療護理查房
- 2024年避孕藥具計劃總結(jié)
- 新聞攝影課件
- 德能勤績考核表
- 收納箱注塑模具設計說明書
- Python數(shù)據(jù)科學方法與實踐(山東聯(lián)盟)智慧樹知到課后章節(jié)答案2023年下山東師范大學
- 河南省鄭州市管城區(qū)卷2023-2024學年數(shù)學四年級第一學期期末聯(lián)考試題含答案
- 班主任考核細則評分表
- 2023教科版二年級上冊科學課堂作業(yè)本參考答案
- 乘坐飛機申請單
- 譯林牛津版九年級英語上冊期末復習課件全套一
評論
0/150
提交評論