版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年江蘇省無錫市錫山區(qū)(錫北片)九年級數(shù)學第一學期期末綜合測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列圖案中,是中心對稱圖形的是()A. B. C. D.2.如果函數(shù)的圖象與雙曲線相交,則當時,該交點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.小思去延慶世界園藝博覽會游覽,如果從永寧瞻勝、萬芳華臺、絲路花雨、九州花境四個景點中隨機選擇一個進行參觀,那么他選擇的景點恰為絲路花雨的概率為()A. B. C. D.4.如圖是某個幾何體的三視圖,該幾何體是()A.長方體 B.圓錐 C.三棱柱 D.圓柱5.下列方程中,是關于x的一元二次方程的為()A. B. C. D.6.對于二次函數(shù),下列說法不正確的是()A.其圖象的對稱軸為過且平行于軸的直線.B.其最小值為1.C.其圖象與軸沒有交點.D.當時,隨的增大而增大.7.計算的結果是()A. B. C. D.98.已知點P1(a-1,5)和P2(2,b-1)關于x軸對稱,則(a+b)2019的值為()A.0 B.﹣1 C.1 D.(3)20199.已知二次函數(shù)的圖象如圖所示,則下列結論正確的是()A. B. C. D.的符號不能確定10.如圖,在⊙O中,弦BC//OA,AC與OB相交于點M,∠C=20°,則∠MBC的度數(shù)為().A.30° B.40°C.50° D.60°11.一次函數(shù)y=﹣3x﹣2的圖象和性質,表述正確的是()A.y隨x的增大而增大 B.在y軸上的截距為2C.與x軸交于點(﹣2,0) D.函數(shù)圖象不經過第一象限12.在Rt△ABC中,∠C=90°,AB=13,AC=5,則tanA的值為A. B. C. D.二、填空題(每題4分,共24分)13.如圖,在△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉60°到△AB′C′的位置,連接C′B,則C′B=______14.半徑為5的圓內接正六邊形的邊心距為__________.15.一個等邊三角形邊長的數(shù)值是方程x2﹣3x﹣10=0的根,那么這個三角形的周長為_____.16.關于x的方程的根為______.17.已知關于的一元二次方程的一個根是2,則的值是:______.18.經過點(1,﹣4)的反比例函數(shù)的解析式是_____.三、解答題(共78分)19.(8分)已知二次函數(shù).(1)求證:無論m取任何實數(shù)時,該函數(shù)圖象與x軸總有交點;(2)如果該函數(shù)的圖象與x軸交點的橫坐標均為正數(shù),求m的最小整數(shù)值.20.(8分)如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過O點作OF⊥AB交⊙O于點D,交AC于點E,交BC的延長線于點F,點G是EF的中點,連接CG(1)判斷CG與⊙O的位置關系,并說明理由;(2)求證:2OB2=BC?BF;(3)如圖2,當∠DCE=2∠F,CE=3,DG=2.5時,求DE的長.21.(8分)如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,BE⊥AB,垂足為B,BE=CD連接CE,DE.(1)求證:四邊形CDBE是矩形(2)若AC=2,∠ABC=30°,求DE的長22.(10分)如圖,在直角坐標系中,,.借助網格,畫出線段向右平移個單位長度后的對應線段,若直線平分四邊形的面積,請求出實數(shù)的值.23.(10分)(1)如圖1,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE,求證:CE=CF;(2)如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結論證明:GE=BE+GD;(3)運用(1)(2)解答中所積累的經驗和知識,完成下題:如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.24.(10分)如圖,在平面直角坐標系中,點的坐標為,點在第一象限,,點是上一點,,.(1)求證:;(2)求的值.25.(12分)如圖,反比例函數(shù)y=(k≠0)的圖象與正比例函數(shù)y=2x的圖象相交于A(1,a),B兩點,點C在第四象限,CA∥y軸,∠ABC=90°.(1)求k的值及點B的坐標;(2)求的值.26.解方程:-2(x+1)=3
參考答案一、選擇題(每題4分,共48分)1、C【解析】根據(jù)中心對稱圖形的概念即可得出答案.【詳解】A選項中,不是中心對稱圖形,故該選項錯誤;B選項中,是軸對稱圖形,不是中心對稱圖形,故該選項錯誤;C選項中,是中心對稱圖形,故該選項正確;D選項中,不是中心對稱圖形,故該選項錯誤.故選C【點睛】本題主要考查中心對稱圖形,掌握中心對稱圖形的概念是解題的關鍵.2、C【分析】直線的圖象經過一、三象限,而函數(shù)y=2x的圖象與雙曲線y(k≠0)相交,所以雙曲線也經過一、三象限,則當x<0時,該交點位于第三象限.【詳解】因為函數(shù)y=2x的系數(shù)k=2>0,所以函數(shù)的圖象過一、三象限;又由于函數(shù)y=2x的圖象與雙曲線y(k≠0)相交,則雙曲線也位于一、三象限;故當x<0時,該交點位于第三象限.故選:C.【點睛】本題考查了反比例函數(shù)的圖象和性質以及正比例函數(shù)的圖象和性質,要掌握它們的性質才能靈活解題.3、B【分析】根據(jù)概率公式直接解答即可.【詳解】∵共有四個景點,分別是永寧瞻勝、萬芳華臺、絲路花雨、九州花境,∴他選擇的景點恰為絲路花雨的概率為;故選:B.【點睛】本題考查了概率的知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.4、D【分析】首先根據(jù)俯視圖排除正方體、三棱柱,然后跟主視圖和左視圖排除圓錐,即可得到結論.【詳解】∵俯視圖是圓,
∴排除A和C,
∵主視圖與左視圖均是長方形,
∴排除B,
故選:D.【點睛】本題主要考查了簡單幾何體的三視圖,用到的知識點為:三視圖分為主視圖、左視圖、俯視圖,分別是從物體正面、左面和上面看,所得到的圖形.5、B【解析】根據(jù)一元二次方程的定義,一元二次方程有三個特點:(1)只含有一個未知數(shù);(1)未知數(shù)的最高次數(shù)是1;(3)是整式方程.要判斷一個方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進行整理.如果能整理為ax1+bx+c=0(a≠0)的形式,則這個方程就為一元二次方程.【詳解】解:A.,是分式方程,B.,正確,C.,是二元二次方程,D.,是關于y的一元二次方程,故選B【點睛】此題主要考查了一元二次方程的定義,關鍵是掌握一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是1.6、D【分析】先將二次函數(shù)變形為頂點式,然后可根據(jù)二次函數(shù)的性質判斷A、B、D三項,再根據(jù)拋物線的頂點和開口即可判斷C項,進而可得答案.【詳解】解:,所以拋物線的對稱軸是直線:x=3,頂點坐標是(3,1);A、其圖象的對稱軸為過且平行于軸的直線,說法正確,本選項不符合題意;B、其最小值為1,說法正確,本選項不符合題意;C、因為拋物線的頂點是(3,1),開口向上,所以其圖象與軸沒有交點,說法正確,本選項不符合題意;D、當時,隨的增大而增大,說法錯誤,所以本選項符合題意.故選:D.【點睛】本題考查了二次函數(shù)的圖象和性質,屬于基本題型,熟練掌握拋物線的性質是解題的關鍵.7、D【分析】根據(jù)負整數(shù)指數(shù)冪的計算方法:,為正整數(shù)),求出的結果是多少即可.【詳解】解:,計算的結果是1.故選:D.【點睛】此題主要考查了負整數(shù)指數(shù)冪:,為正整數(shù)),要熟練掌握,解答此題的關鍵是要明確:(1)計算負整數(shù)指數(shù)冪時,一定要根據(jù)負整數(shù)指數(shù)冪的意義計算;(2)當?shù)讛?shù)是分數(shù)時,只要把分子、分母顛倒,負指數(shù)就可變?yōu)檎笖?shù).8、B【分析】根據(jù)關于x軸對稱的點,橫坐標不變,縱坐標互為相反數(shù)的概念,求出P1P2的坐標,得出a,b的值代入(a+b)2019求值即可.【詳解】因為關于x軸對稱橫坐標不變,所以,a-1=2,得出a=3,又因為關于x軸對稱縱坐標互為相反數(shù),所以b-1=-5,得出b=-4(a+b)2019=(3-4)2019即.故答案為:B【點睛】本題考查關于x軸對稱的點,橫坐標不變,縱坐標互為相反數(shù)的概念和有理數(shù)的冪運算原理,利用-1的偶次冪為1,奇次冪為它本身的原理即可快速得出答案為-1.9、A【分析】由題意根據(jù)二次函數(shù)的圖象與性質即可求出答案判斷選項.【詳解】解:由圖象可知開口向上a>0,與y軸交點在上半軸c>0,∴ac>0,故選A.【點睛】本題考查二次函數(shù)的圖象與性質,解題的關鍵是熟練運用二次函數(shù)的圖象與性質,本題屬于中等題型.10、B【分析】由圓周角定理(同弧所對的圓周角是圓心角的一半)得到∠AOB,再由平行得∠MBC.【詳解】解:∵∠C=20°
∴∠AOB=40°
又∵弦BC∥半徑OA
∴∠MBC=∠AOB=40°,故選:B.【點睛】熟練掌握圓周角定理,平行線的性質是解答此題的關鍵.11、D【解析】根據(jù)一次函數(shù)的圖象和性質,依次分析各個選項,選出正確的選項即可.【詳解】A.一次函數(shù)y=﹣3x﹣2的圖象y隨著x的增大而減小,即A項錯誤;B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y軸的截距為﹣2,即B項錯誤;C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x,即與x軸交于點(,0),即C項錯誤;D.函數(shù)圖象經過第二三四象限,不經過第一象限,即D項正確.故選D.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征,一次函數(shù)的性質,正確掌握一次函數(shù)圖象的增減性和一次函數(shù)的性質是解題的關鍵.12、D【分析】利用勾股定理即可求得BC的長,然后根據(jù)正切的定義即可求解.【詳解】根據(jù)勾股定理可得:BC=∴tanA=.故選:D.【點睛】本題考查了勾股定理和三角函數(shù)的定義,正確理解三角函數(shù)的定義是關鍵.二、填空題(每題4分,共24分)13、【解析】如圖,連接BB′,∵△ABC繞點A順時針方向旋轉60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等邊三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延長BC′交AB′于D,則BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD?C′D=?1.故答案為:?1.點睛:本題考查了旋轉的性質,全等三角形的判定與性質,等邊三角形的判定與性質,等腰直角三角形的性質,作輔助線構造出全等三角形并求出BC′在等邊三角形的高上是解題的關鍵,也是本題的難點.14、【分析】連接OA、OB,作OH⊥AB,根據(jù)圓內接正六邊形的性質得到△ABO是等邊三角形,利用垂徑定理及勾股定理即可求出邊心距OH.【詳解】如圖,連接OA、OB,作OH⊥AB,∵六邊形ABCDEF是圓內接正六邊形,∴∠FAB=∠ABC=180-,∴∠OAB=∠OBA=60,∴△ABO是等邊三角形,∴AB=OA=5,∵OH⊥AB,∴AH=2.5,∴OH=,故答案為:.【點睛】此題考查圓內接正六邊形的性質,垂徑定理,勾股定理.解題中熟記正六邊形的性質得到∠FAB=∠ABC=120是解題的關鍵,由此即可證得△ABO是等邊三角形,利用勾股定理解決問題.15、12【解析】先解方程求出方程的根,再確定等邊三角形的邊長,然后求等邊三角形的周長.【詳解】解:x1﹣3x﹣10=0,(x﹣2)(x+1)=0,即x﹣2=0或x+1=0,∴x1=2,x1=﹣1.因為方程x1﹣3x﹣10=0的根是等邊三角形的邊長,所以等邊三角形的邊長為2.所以該三角形的周長為:2×3=12.故答案為:12.【點睛】本題考查了一元二次方程的解法、等邊三角形的周長等知識點.求出方程的解是解決本題的關鍵.16、x1=0,x2=【分析】直接由因式分解法方程,即可得到答案.【詳解】解:∵,∴或,∴,;故答案為:,.【點睛】本題考查了解一元二次方程,解題的關鍵是熟練掌握因式分解法解方程.17、1【分析】先將所求式子化成,再根據(jù)一元二次方程的根的定義得出一個a、b的等式,然后將其代入求解即可得.【詳解】由題意,將代入方程得:整理得:,即將代入得:故答案為:1.【點睛】本題考查了一元二次方程的根的定義、代數(shù)式的化簡求值,利用一元二次方程的根的定義得出是解題關鍵.18、﹣【分析】直接利用反比例函數(shù)的性質得出解析式.【詳解】∵反比例函數(shù)經過點(1,﹣4),∴xy=﹣4,∴反比例函數(shù)的解析式是:y=﹣.故答案為:y=﹣.【點睛】本題考查的是反比例函數(shù)的性質,是近幾年中考的熱點問題,要熟練掌握.三、解答題(共78分)19、(1)見解析;(2).【分析】(1)先計算對應一元二次方程的根的判別式的值,然后依此進行判斷即可;(2)先把m看成常數(shù),解出對應一元二次方程的解,再根據(jù)該函數(shù)的圖象與軸交點的橫坐標均為正數(shù)列出不等式,求出m的取值范圍,再把這個范圍的整數(shù)解寫出即可.【詳解】(1)由題意,得△=,∴無論m取任何實數(shù)時,該函數(shù)圖象與x軸總有交點.(2)∵,∴,.∵該函數(shù)的圖象與軸交點的橫坐標均為正數(shù),∴,即.∵m取最小整數(shù);∴.【點睛】本題考查了二次函數(shù)與一元二次方程的關系,把二次函數(shù)交點問題轉化成一元二次方程根的問題是解題的關鍵.20、(1)CG與⊙O相切,理由見解析;(1)見解析;(3)DE=1【解析】(1)連接CE,由AB是直徑知△ECF是直角三角形,結合G為EF中點知∠AEO=∠GEC=∠GCE,再由OA=OC知∠OCA=∠OAC,根據(jù)OF⊥AB可得∠OCA+∠GCE=90°,即OC⊥GC,據(jù)此即可得證;(1)證△ABC∽△FBO得,結合AB=1BO即可得;(3)證ECD∽△EGC得,根據(jù)CE=3,DG=1.5知,解之可得.【詳解】解:(1)CG與⊙O相切,理由如下:如圖1,連接CE,∵AB是⊙O的直徑,∴∠ACB=∠ACF=90°,∵點G是EF的中點,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∴CG與⊙O相切;(1)∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴,即BO?AB=BC?BF,∵AB=1BO,∴1OB1=BC?BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=1∠F,又∵∠DCE=1∠F,∴∠EGC=∠DCE,∵∠DEC=∠CEG,∴△ECD∽△EGC,∴,∵CE=3,DG=1.5,∴,整理,得:DE1+1.5DE﹣9=0,解得:DE=1或DE=﹣4.5(舍),故DE=1.【點睛】本題是圓的綜合問題,解題的關鍵是掌握圓周角定理、切線的判定、相似三角形的判定與性質及直角三角形的性質等知識點.21、(1)見詳解,(2)DE=2【解析】(1)利用有一組對邊平行且相等的四邊形是平行四邊形,有一個角是90°的平行四邊形是矩形即可證明,(2)利用30°角所對直角邊是斜邊的一半和勾股定理即可解題.【詳解】解:(1)∵CD⊥AB,BE⊥AB,∴CD∥BE,∵BE=CD,∴四邊形CDBE是矩形,(2)在Rt△ABC中,∵∠ABC=30°,AC=2,∴AB=4,(30°角所對直角邊是斜邊的一半)∴DE=BC=2(勾股定理)【點睛】本題考查了矩形的證明和特殊直角三角形的性質,屬于簡單題,熟悉判定方法是解題關鍵.22、【分析】根據(jù)平移變換即可作出對應線段,根據(jù)平行四邊形的性質,平分平行四邊形面積的直線經過平行四邊形的中心,然后求出AC的中點,代入直線計算即可求出k值.【詳解】畫圖如圖所示:點坐標為,點坐標為,的中點坐標為,又直線平分平行四邊形的面積,則過點,,.【點睛】本題考查的是作圖-平移變換,平行四邊形的性質,待定系數(shù)法求函數(shù)解析式,要注意平分平行四邊形面積的直線經過平行四邊形的中心的應用.23、(1)證明見解析;(2)證明見解析;(3)1.【分析】(1)根據(jù)正方形的性質,可直接證明△CBE≌△CDF,從而得出CE=CF;(2)延長AD至F,使DF=BE,連接CF,根據(jù)(1)知∠BCE=∠DCF,即可證明∠ECF=∠BCD=90°,根據(jù)∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)過C作CF⊥AD的延長線于點F.則四邊形ABCF是正方形,設DF=x,則AD=12-x,根據(jù)(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解.【詳解】(1)如圖1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)如圖,延長AD至F,使DF=BE,連接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)如圖:過點C作CF⊥AD于F,∵AD∥BC,∠B=90°,∴∠A=90°,
∵∠A=∠B=90°,F(xiàn)C⊥AD,∴四邊形ABCF是矩形,且AB=BC=12,∴四邊形ABCF是正方形,∴AF=12,由(2)可得DE=DF+BE,∴DE=4+DF,在△ADE中,AE2+DA2=DE2,∴(12?4)2+(12?DF)2=(4+DF)2,∴DF=6,∴AD=6,∴S四邊形ABCD=(AD+BC)×AB=×(6+12)×12=1.【點睛】本題考查了全等三角形的判定和性質以及正方形的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園中班色彩課程設計
- 數(shù)字連連看java課程設計
- 幼兒舞蹈課程設計大綱
- 掃雷游戲的課程設計
- 長輸天然氣管道安全管理策略
- 早教托班繪畫課程設計
- 歷史科課程設計
- 循環(huán)程序課程設計
- 挖水渠課程設計解
- 遠程辦公平臺服務使用合同
- 何家弘法律英語第四版翻譯完整版
- 電氣工程師年度工作匯報
- 第18課 多彩的文明-亞非拉美術 課件-2023-2024學年高中美術人教版(2019)必修美術鑒賞
- 【求陰影部分面積】五年級上冊數(shù)學必考求陰影部分面積35題2023.9.27
- 校園反恐防暴主題班會
- 拼多多工作臺操作流程
- 三級英語閱讀習題(3篇)
- 辦公室、宿舍現(xiàn)場處置方案
- “阿里巴巴”并購“餓了么”案例分析
- 人教版初中九年級英語全冊單詞(按詞性分類)-
- 110kV輸變電工程旁站監(jiān)理方案含流程圖
評論
0/150
提交評論