![云南省建水第六中學(xué)2024屆高三下學(xué)期第三次聯(lián)合考試(期末)數(shù)學(xué)試題(文理)_第1頁](http://file4.renrendoc.com/view10/M00/30/1D/wKhkGWWSGHCAUNxKAAHOENpUkd8131.jpg)
![云南省建水第六中學(xué)2024屆高三下學(xué)期第三次聯(lián)合考試(期末)數(shù)學(xué)試題(文理)_第2頁](http://file4.renrendoc.com/view10/M00/30/1D/wKhkGWWSGHCAUNxKAAHOENpUkd81312.jpg)
![云南省建水第六中學(xué)2024屆高三下學(xué)期第三次聯(lián)合考試(期末)數(shù)學(xué)試題(文理)_第3頁](http://file4.renrendoc.com/view10/M00/30/1D/wKhkGWWSGHCAUNxKAAHOENpUkd81313.jpg)
![云南省建水第六中學(xué)2024屆高三下學(xué)期第三次聯(lián)合考試(期末)數(shù)學(xué)試題(文理)_第4頁](http://file4.renrendoc.com/view10/M00/30/1D/wKhkGWWSGHCAUNxKAAHOENpUkd81314.jpg)
![云南省建水第六中學(xué)2024屆高三下學(xué)期第三次聯(lián)合考試(期末)數(shù)學(xué)試題(文理)_第5頁](http://file4.renrendoc.com/view10/M00/30/1D/wKhkGWWSGHCAUNxKAAHOENpUkd81315.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
云南省建水第六中學(xué)2024屆高三下學(xué)期第三次聯(lián)合考試(期末)數(shù)學(xué)試題(文理)注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.己知四棱錐中,四邊形為等腰梯形,,,是等邊三角形,且;若點(diǎn)在四棱錐的外接球面上運(yùn)動(dòng),記點(diǎn)到平面的距離為,若平面平面,則的最大值為()A. B.C. D.2.一袋中裝有個(gè)紅球和個(gè)黑球(除顏色外無區(qū)別),任取球,記其中黑球數(shù)為,則為()A. B. C. D.3.函數(shù)的大致圖象是()A. B.C. D.4.設(shè),滿足約束條件,則的最大值是()A. B. C. D.5.已知函數(shù),若不等式對(duì)任意的恒成立,則實(shí)數(shù)k的取值范圍是()A. B. C. D.6.關(guān)于函數(shù),下列說法正確的是()A.函數(shù)的定義域?yàn)锽.函數(shù)一個(gè)遞增區(qū)間為C.函數(shù)的圖像關(guān)于直線對(duì)稱D.將函數(shù)圖像向左平移個(gè)單位可得函數(shù)的圖像7.已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程為()A. B. C. D.8.我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果,哥德巴赫猜想的內(nèi)容是:每個(gè)大于2的偶數(shù)都可以表示為兩個(gè)素?cái)?shù)的和,例如:,,,那么在不超過18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù),其和等于16的概率為()A. B. C. D.9.在直角坐標(biāo)平面上,點(diǎn)的坐標(biāo)滿足方程,點(diǎn)的坐標(biāo)滿足方程則的取值范圍是()A. B. C. D.10.已知函數(shù)為奇函數(shù),且,則()A.2 B.5 C.1 D.311.已知函數(shù)在上有兩個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.12.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項(xiàng)和公式為,則數(shù)列的通項(xiàng)公式為___.14.已知數(shù)列滿足,則________.15.內(nèi)角,,的對(duì)邊分別為,,,若,則__________.16.已知復(fù)數(shù)(為虛數(shù)單位)為純虛數(shù),則實(shí)數(shù)的值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當(dāng)為何值時(shí),軸為曲線的切線;(2)用表示、中的最大值,設(shè)函數(shù),當(dāng)時(shí),討論零點(diǎn)的個(gè)數(shù).18.(12分)已知橢圓的右焦點(diǎn)為,直線被稱作為橢圓的一條準(zhǔn)線,點(diǎn)在橢圓上(異于橢圓左、右頂點(diǎn)),過點(diǎn)作直線與橢圓相切,且與直線相交于點(diǎn).(1)求證:.(2)若點(diǎn)在軸的上方,當(dāng)?shù)拿娣e最小時(shí),求直線的斜率.附:多項(xiàng)式因式分解公式:19.(12分)某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗(yàn)1000人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)1000次.方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn)次);否則,若呈陽性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn),這樣,該組個(gè)人的血總共需要化驗(yàn)次.假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.(1)設(shè)方案②中,某組個(gè)人的每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;(2)設(shè),試比較方案②中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))20.(12分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點(diǎn),SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.21.(12分)在直角坐標(biāo)系xOy中,直線的參數(shù)方程為(t為參數(shù),).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.(l)求直線的普通方程和曲線C的直角坐標(biāo)方程:(2)若直線與曲線C相交于A,B兩點(diǎn),且.求直線的方程.22.(10分)已知函數(shù),將的圖象向左移個(gè)單位,得到函數(shù)的圖象.(1)若,求的單調(diào)區(qū)間;(2)若,的一條對(duì)稱軸是,求在的值域.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】
根據(jù)平面平面,四邊形為等腰梯形,則球心在過的中點(diǎn)的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據(jù)已知量求解即可.【題目詳解】依題意如圖所示:取的中點(diǎn),則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設(shè)四棱錐的外接球半徑為,則,而,所以,故選:A.【題目點(diǎn)撥】本題考查組合體、球,還考查空間想象能力以及數(shù)形結(jié)合的思想,屬于難題.2、A【解題分析】
由題意可知,隨機(jī)變量的可能取值有、、、,計(jì)算出隨機(jī)變量在不同取值下的概率,進(jìn)而可求得隨機(jī)變量的數(shù)學(xué)期望值.【題目詳解】由題意可知,隨機(jī)變量的可能取值有、、、,則,,,.因此,隨機(jī)變量的數(shù)學(xué)期望為.故選:A.【題目點(diǎn)撥】本題考查隨機(jī)變量數(shù)學(xué)期望的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.3、A【解題分析】
用排除B,C;用排除;可得正確答案.【題目詳解】解:當(dāng)時(shí),,,所以,故可排除B,C;當(dāng)時(shí),,故可排除D.故選:A.【題目點(diǎn)撥】本題考查了函數(shù)圖象,屬基礎(chǔ)題.4、D【解題分析】
作出不等式對(duì)應(yīng)的平面區(qū)域,由目標(biāo)函數(shù)的幾何意義,通過平移即可求z的最大值.【題目詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內(nèi)平移當(dāng)過點(diǎn)時(shí),取得最大值.由得:,故選:D【題目點(diǎn)撥】本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,屬于基礎(chǔ)題.5、A【解題分析】
先求出函數(shù)在處的切線方程,在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象,利用數(shù)形結(jié)合進(jìn)行求解即可.【題目詳解】當(dāng)時(shí),,所以函數(shù)在處的切線方程為:,令,它與橫軸的交點(diǎn)坐標(biāo)為.在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象如下圖的所示:利用數(shù)形結(jié)合思想可知:不等式對(duì)任意的恒成立,則實(shí)數(shù)k的取值范圍是.故選:A【題目點(diǎn)撥】本題考查了利用數(shù)形結(jié)合思想解決不等式恒成立問題,考查了導(dǎo)數(shù)的應(yīng)用,屬于中檔題.6、B【解題分析】
化簡到,根據(jù)定義域排除,計(jì)算單調(diào)性知正確,得到答案.【題目詳解】,故函數(shù)的定義域?yàn)?,故錯(cuò)誤;當(dāng)時(shí),,函數(shù)單調(diào)遞增,故正確;當(dāng),關(guān)于的對(duì)稱的直線為不在定義域內(nèi),故錯(cuò)誤.平移得到的函數(shù)定義域?yàn)椋什豢赡転?,錯(cuò)誤.故選:.【題目點(diǎn)撥】本題考查了三角恒等變換,三角函數(shù)單調(diào)性,定義域,對(duì)稱,三角函數(shù)平移,意在考查學(xué)生的綜合應(yīng)用能力.7、A【解題分析】
根據(jù)雙曲線的焦距是虛軸長的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【題目詳解】解:由雙曲線可知,焦點(diǎn)在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.【題目點(diǎn)撥】本題考查雙曲線的簡單幾何性質(zhì),以及雙曲線的漸近線方程.8、B【解題分析】
先求出從不超過18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù)的所有可能結(jié)果,然后再求出其和等于16的結(jié)果,根據(jù)等可能事件的概率公式可求.【題目詳解】解:不超過18的素?cái)?shù)有2,3,5,7,11,13,17共7個(gè),從中隨機(jī)選取兩個(gè)不同的數(shù)共有,其和等于16的結(jié)果,共2種等可能的結(jié)果,故概率.故選:B.【題目點(diǎn)撥】古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),本題不可以列舉出所有事件但可以用分步計(jì)數(shù)得到,屬于基礎(chǔ)題.9、B【解題分析】
由點(diǎn)的坐標(biāo)滿足方程,可得在圓上,由坐標(biāo)滿足方程,可得在圓上,則求出兩圓內(nèi)公切線的斜率,利用數(shù)形結(jié)合可得結(jié)果.【題目詳解】點(diǎn)的坐標(biāo)滿足方程,在圓上,在坐標(biāo)滿足方程,在圓上,則作出兩圓的圖象如圖,設(shè)兩圓內(nèi)公切線為與,由圖可知,設(shè)兩圓內(nèi)公切線方程為,則,圓心在內(nèi)公切線兩側(cè),,可得,,化為,,即,,的取值范圍,故選B.【題目點(diǎn)撥】本題主要考查直線的斜率、直線與圓的位置關(guān)系以及數(shù)形結(jié)合思想的應(yīng)用,屬于綜合題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對(duì)應(yīng)關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學(xué)問題的一種重要思想方法,尤其在解決選擇題、填空題時(shí)發(fā)揮著奇特功效,大大提高了解題能力與速度.運(yùn)用這種方法的關(guān)鍵是運(yùn)用這種方法的關(guān)鍵是正確作出曲線圖象,充分利用數(shù)形結(jié)合的思想方法能夠使問題化難為簡,并迎刃而解.10、B【解題分析】
由函數(shù)為奇函數(shù),則有,代入已知即可求得.【題目詳解】.故選:.【題目點(diǎn)撥】本題考查奇偶性在抽象函數(shù)中的應(yīng)用,考查學(xué)生分析問題的能力,難度較易.11、C【解題分析】
對(duì)函數(shù)求導(dǎo),對(duì)a分類討論,分別求得函數(shù)的單調(diào)性及極值,結(jié)合端點(diǎn)處的函數(shù)值進(jìn)行判斷求解.【題目詳解】∵,.當(dāng)時(shí),,在上單調(diào)遞增,不合題意.當(dāng)時(shí),,在上單調(diào)遞減,也不合題意.當(dāng)時(shí),則時(shí),,在上單調(diào)遞減,時(shí),,在上單調(diào)遞增,又,所以在上有兩個(gè)零點(diǎn),只需即可,解得.綜上,的取值范圍是.故選C.【題目點(diǎn)撥】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點(diǎn)的問題,考查了函數(shù)的單調(diào)性及極值問題,屬于中檔題.12、D【解題分析】
先計(jì)算,然后將進(jìn)行平方,,可得結(jié)果.【題目詳解】由題意可得:∴∴則.故選:D.【題目點(diǎn)撥】本題考查的是向量的數(shù)量積的運(yùn)算和模的計(jì)算,屬基礎(chǔ)題。二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
由題意,根據(jù)數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系,即可求得數(shù)列的通項(xiàng)公式.【題目詳解】由題意,可知當(dāng)時(shí),;當(dāng)時(shí),.又因?yàn)椴粷M足,所以.【題目點(diǎn)撥】本題主要考查了利用數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系求解數(shù)列的通項(xiàng)公式,其中解答中熟記數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系,合理準(zhǔn)確推導(dǎo)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.14、【解題分析】
項(xiàng)和轉(zhuǎn)化可得,討論是否滿足,分段表示即得解【題目詳解】當(dāng)時(shí),由已知,可得,∵,①故,②由①-②得,∴.顯然當(dāng)時(shí)不滿足上式,∴故答案為:【題目點(diǎn)撥】本題考查了利用求,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算,分類討論的能力,屬于中檔題.15、【解題分析】∵,∴,即,∴,∴.16、【解題分析】
利用復(fù)數(shù)的乘法求解再根據(jù)純虛數(shù)的定義求解即可.【題目詳解】解:復(fù)數(shù)為純虛數(shù),解得.故答案為:.【題目點(diǎn)撥】本題主要考查了根據(jù)復(fù)數(shù)為純虛數(shù)求解參數(shù)的問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解題分析】
(1)設(shè)切點(diǎn)坐標(biāo)為,然后根據(jù)可解得實(shí)數(shù)的值;(2)令,,然后對(duì)實(shí)數(shù)進(jìn)行分類討論,結(jié)合和的符號(hào)來確定函數(shù)的零點(diǎn)個(gè)數(shù).【題目詳解】(1),,設(shè)曲線與軸相切于點(diǎn),則,即,解得.所以,當(dāng)時(shí),軸為曲線的切線;(2)令,,則,,由,得.當(dāng)時(shí),,此時(shí),函數(shù)為增函數(shù);當(dāng)時(shí),,此時(shí),函數(shù)為減函數(shù).,.①當(dāng),即當(dāng)時(shí),函數(shù)有一個(gè)零點(diǎn);②當(dāng),即當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);③當(dāng),即當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn);④當(dāng),即當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);⑤當(dāng),即當(dāng)時(shí),函數(shù)只有一個(gè)零點(diǎn).綜上所述,當(dāng)或時(shí),函數(shù)只有一個(gè)零點(diǎn);當(dāng)或時(shí),函數(shù)有兩個(gè)零點(diǎn);當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn).【題目點(diǎn)撥】本題考查了利用導(dǎo)數(shù)的幾何意義研究切線方程和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,關(guān)鍵是分類討論思想的應(yīng)用,屬難題.18、(1)證明見解析(2)【解題分析】
(1)由得令可得,進(jìn)而得到,同理,利用數(shù)量積坐標(biāo)計(jì)算即可;(2),分,兩種情況討論即可.【題目詳解】(1)證明:點(diǎn)的坐標(biāo)為.聯(lián)立方程,消去后整理為有,可得,,.可得點(diǎn)的坐標(biāo)為.當(dāng)時(shí),可求得點(diǎn)的坐標(biāo)為,,.有,故有.(2)若點(diǎn)在軸上方,因?yàn)?,所以有,由?)知①因?yàn)闀r(shí).由(1)知,由函數(shù)單調(diào)遞增,可得此時(shí).②當(dāng)時(shí),由(1)知令由,故當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增:當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,又由,故函數(shù)的最小值,函數(shù)取最小值時(shí),可求得.由①②知,若點(diǎn)在軸上方,當(dāng)?shù)拿娣e最小時(shí),直線的斜率為.【題目點(diǎn)撥】本題考查直線與橢圓的位置關(guān)系,涉及到分類討論求函數(shù)的最值,考查學(xué)生的運(yùn)算求解能力,是一道難題.19、(1)分布列見解析;(2)406.【解題分析】
(1)計(jì)算個(gè)人的血混合后呈陰性反應(yīng)的概率為,呈陽性反應(yīng)的概率為,得到分布列.(2)計(jì)算,代入數(shù)據(jù)計(jì)算比較大小得到答案.【題目詳解】(1)設(shè)每個(gè)人的血呈陰性反應(yīng)的概率為,則.所以個(gè)人的血混合后呈陰性反應(yīng)的概率為,呈陽性反應(yīng)的概率為.依題意可知,,所以的分布列為:(2)方案②中.結(jié)合(1)知每個(gè)人的平均化驗(yàn)次數(shù)為:時(shí),,此時(shí)1000人需要化驗(yàn)的總次數(shù)為690次,時(shí),,此時(shí)1000人需要化驗(yàn)的總次數(shù)為604次,時(shí),,此時(shí)1000人需要化驗(yàn)的次數(shù)總為594次,即時(shí)化驗(yàn)次數(shù)最多,時(shí)次數(shù)居中,時(shí)化驗(yàn)次數(shù)最少,而采用方案①則需化驗(yàn)1000次,故在這三種分組情況下,相比方案①,當(dāng)時(shí)化驗(yàn)次數(shù)最多可以平均減少次.【題目點(diǎn)撥】本題考查了分布列,數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.20、(I)證明見解析;(II)1【解題分析】
(I)過D作DE⊥BC于E,連接SE,根據(jù)勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過點(diǎn)D作DF⊥SE于F,證明DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,計(jì)算夾角得到答案.【題目詳解】(I)過D作DE⊥BC于E,連接SE,根據(jù)角度的垂直關(guān)系易知:AC=1,AB=SB=2,CS=CB=3,故DE=BDsin∠CBD=6根據(jù)余弦定理:13+SE2-2故SE⊥BC,DE⊥BC,SE∩DE=E,故BC⊥平面SED,SD?平面SED,故SD⊥BC.(II)過點(diǎn)D作DF⊥SE于F,BC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版七年級(jí)數(shù)學(xué)下冊8.2.1.2《代入消元法(2)》聽評(píng)課記錄
- 新版華東師大版八年級(jí)數(shù)學(xué)下冊《18平行四邊形》聽評(píng)課記錄30
- 珍稀郵票贈(zèng)與合同(2篇)
- 生物識(shí)別技術(shù)開發(fā)合同(2篇)
- 蘇人版道德與法治九年級(jí)上冊2.1《參與公共生活》聽課評(píng)課記錄
- 《青銅器與甲骨文》聽課評(píng)課記錄2(新部編人教版七年級(jí)上冊歷史)
- 晉教版地理七年級(jí)下冊《9.1 東南亞──兩洲兩洋的“十字路口”》聽課評(píng)課記錄2
- 蘇科版數(shù)學(xué)七年級(jí)上冊第四章 一元一次方程-應(yīng)用教聽評(píng)課記錄
- 湘教版數(shù)學(xué)八年級(jí)下冊2.2.2《平行四邊形的判定定理》聽評(píng)課記錄2
- 湘教版九年級(jí)數(shù)學(xué)上冊第1章反比例函數(shù)1.3反比例函數(shù)的應(yīng)用聽評(píng)課記錄
- 5《這些事我來做》(說課稿)-部編版道德與法治四年級(jí)上冊
- 2025年度高端商務(wù)車輛聘用司機(jī)勞動(dòng)合同模板(專業(yè)版)4篇
- 2025年福建福州市倉山區(qū)國有投資發(fā)展集團(tuán)有限公司招聘筆試參考題庫附帶答案詳解
- 2025年人教版新教材數(shù)學(xué)一年級(jí)下冊教學(xué)計(jì)劃(含進(jìn)度表)
- GB/T 45107-2024表土剝離及其再利用技術(shù)要求
- 2025長江航道工程局招聘101人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年黑龍江哈爾濱市面向社會(huì)招聘社區(qū)工作者1598人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年國新國際投資有限公司招聘筆試參考題庫含答案解析
- 2025年八省聯(lián)考四川高考生物試卷真題答案詳解(精校打印)
- 《供電營業(yè)規(guī)則》
- 執(zhí)行總經(jīng)理崗位職責(zé)
評(píng)論
0/150
提交評(píng)論