版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
福建省龍海市程溪中學(xué)2024屆招生全國統(tǒng)一考試數(shù)學(xué)試題仿真試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.從某市的中學(xué)生中隨機(jī)調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖:根據(jù)頻率分布直方圖,可知這部分男生的身高的中位數(shù)的估計(jì)值為A. B.C. D.2.若函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為().A. B. C. D.3.函數(shù)f(x)=sin(wx+)(w>0,<)的最小正周期是π,若將該函數(shù)的圖象向右平移個單位后得到的函數(shù)圖象關(guān)于直線x=對稱,則函數(shù)f(x)的解析式為()A.f(x)=sin(2x+) B.f(x)=sin(2x-)C.f(x)=sin(2x+) D.f(x)=sin(2x-)4.已知雙曲線的一個焦點(diǎn)為,點(diǎn)是的一條漸近線上關(guān)于原點(diǎn)對稱的兩點(diǎn),以為直徑的圓過且交的左支于兩點(diǎn),若,的面積為8,則的漸近線方程為()A. B.C. D.5.曲線上任意一點(diǎn)處的切線斜率的最小值為()A.3 B.2 C. D.16.已知函數(shù),若函數(shù)有三個零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.7.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件8.如圖,長方體中,,,點(diǎn)T在棱上,若平面.則()A.1 B. C.2 D.9.甲乙丙丁四人中,甲說:我年紀(jì)最大,乙說:我年紀(jì)最大,丙說:乙年紀(jì)最大,丁說:我不是年紀(jì)最大的,若這四人中只有一個人說的是真話,則年紀(jì)最大的是()A.甲 B.乙 C.丙 D.丁10.函數(shù)y=sin2x的圖象可能是A. B.C. D.11.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,則不可能為()A. B. C. D.12.在中,,,,點(diǎn)滿足,則等于()A.10 B.9 C.8 D.7二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的一條漸近線為,且經(jīng)過拋物線的焦點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程為______.14.若四棱錐的側(cè)面內(nèi)有一動點(diǎn)Q,已知Q到底面的距離與Q到點(diǎn)P的距離之比為正常數(shù)k,且動點(diǎn)Q的軌跡是拋物線,則當(dāng)二面角平面角的大小為時,k的值為______.15.已知橢圓與雙曲線有相同的焦點(diǎn)、,其中為左焦點(diǎn).點(diǎn)為兩曲線在第一象限的交點(diǎn),、分別為曲線、的離心率,若是以為底邊的等腰三角形,則的取值范圍為________.16.設(shè)平面向量與的夾角為,且,,則的取值范圍為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知矩陣的一個特征值為3,求另一個特征值及其對應(yīng)的一個特征向量.18.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.19.(12分)在ABC中,角A,B,C的對邊分別為a,b,c,已知,(Ⅰ)求的大??;(Ⅱ)若,求面積的最大值.20.(12分)設(shè)函數(shù)()的最小值為.(1)求的值;(2)若,,為正實(shí)數(shù),且,證明:.21.(12分)已知函數(shù)(),不等式的解集為.(1)求的值;(2)若,,,且,求的最大值.22.(10分)已知橢圓,點(diǎn)為半圓上一動點(diǎn),若過作橢圓的兩切線分別交軸于、兩點(diǎn).(1)求證:;(2)當(dāng)時,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】
由題可得,解得,則,,所以這部分男生的身高的中位數(shù)的估計(jì)值為,故選C.2、C【解題分析】
由題意利用函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,求出的最大值.【題目詳解】解:把函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間,上,,,則當(dāng)最大時,,求得,故選:C.【題目點(diǎn)撥】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.3、D【解題分析】
由函數(shù)的周期求得,再由平移后的函數(shù)圖像關(guān)于直線對稱,得到,由此求得滿足條件的的值,即可求得答案.【題目詳解】分析:由函數(shù)的周期求得,再由平移后的函數(shù)圖像關(guān)于直線對稱,得到,由此求得滿足條件的的值,即可求得答案.詳解:因?yàn)楹瘮?shù)的最小正周期是,所以,解得,所以,將該函數(shù)的圖像向右平移個單位后,得到圖像所對應(yīng)的函數(shù)解析式為,由此函數(shù)圖像關(guān)于直線對稱,得:,即,取,得,滿足,所以函數(shù)的解析式為,故選D.【題目點(diǎn)撥】本題主要考查了三角函數(shù)的圖象變換,以及函數(shù)的解析式的求解,其中解答中根據(jù)三角函數(shù)的圖象變換得到,再根據(jù)三角函數(shù)的性質(zhì)求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.4、B【解題分析】
由雙曲線的對稱性可得即,又,從而可得的漸近線方程.【題目詳解】設(shè)雙曲線的另一個焦點(diǎn)為,由雙曲線的對稱性,四邊形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的漸近線方程為.故選B【題目點(diǎn)撥】本題考查雙曲線的簡單幾何性質(zhì),考查直線與圓的位置關(guān)系,考查數(shù)形結(jié)合思想與計(jì)算能力,屬于中檔題.5、A【解題分析】
根據(jù)題意,求導(dǎo)后結(jié)合基本不等式,即可求出切線斜率,即可得出答案.【題目詳解】解:由于,根據(jù)導(dǎo)數(shù)的幾何意義得:,即切線斜率,當(dāng)且僅當(dāng)?shù)忍柍闪?,所以上任意一點(diǎn)處的切線斜率的最小值為3.故選:A.【題目點(diǎn)撥】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用以及運(yùn)用基本不等式求最值,考查計(jì)算能力.6、B【解題分析】
根據(jù)所給函數(shù)解析式,畫出函數(shù)圖像.結(jié)合圖像,分段討論函數(shù)的零點(diǎn)情況:易知為的一個零點(diǎn);對于當(dāng)時,由代入解析式解方程可求得零點(diǎn),結(jié)合即可求得的范圍;對于當(dāng)時,結(jié)合導(dǎo)函數(shù),結(jié)合導(dǎo)數(shù)的幾何意義即可判斷的范圍.綜合后可得的范圍.【題目詳解】根據(jù)題意,畫出函數(shù)圖像如下圖所示:函數(shù)的零點(diǎn),即.由圖像可知,,所以是的一個零點(diǎn),當(dāng)時,,若,則,即,所以,解得;當(dāng)時,,則,且若在時有一個零點(diǎn),則,綜上可得,故選:B.【題目點(diǎn)撥】本題考查了函數(shù)圖像的畫法,函數(shù)零點(diǎn)定義及應(yīng)用,根據(jù)零點(diǎn)個數(shù)求參數(shù)的取值范圍,導(dǎo)數(shù)的幾何意義應(yīng)用,屬于中檔題.7、A【解題分析】
利用兩條直線互相平行的條件進(jìn)行判定【題目詳解】當(dāng)時,直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選【題目點(diǎn)撥】本題主要考查了兩直線平行的條件和性質(zhì),充分條件,必要條件的定義和判斷方法,屬于基礎(chǔ)題.8、D【解題分析】
根據(jù)線面垂直的性質(zhì),可知;結(jié)合即可證明,進(jìn)而求得.由線段關(guān)系及平面向量數(shù)量積定義即可求得.【題目詳解】長方體中,,點(diǎn)T在棱上,若平面.則,則,所以,則,所以,故選:D.【題目點(diǎn)撥】本題考查了直線與平面垂直的性質(zhì)應(yīng)用,平面向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.9、C【解題分析】
分別假設(shè)甲乙丙丁說的是真話,結(jié)合其他人的說法,看是否只有一個說的是真話,即可求得年紀(jì)最大者,即可求得答案.【題目詳解】①假設(shè)甲說的是真話,則年紀(jì)最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個人說的是真話,故甲說的不是真話,年紀(jì)最大的不是甲;②假設(shè)乙說的是真話,則年紀(jì)最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個人說的是真話,故乙說謊,年紀(jì)最大的也不是乙;③假設(shè)丙說的是真話,則年紀(jì)最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個人說的是真話,故丙在說謊,年紀(jì)最大的也不是乙;④假設(shè)丁說的是真話,則年紀(jì)最大的不是丁,而已知只有一個人說的是真話,那么甲也說謊,說明甲也不是年紀(jì)最大的,同時乙也說謊,說明乙也不是年紀(jì)最大的,年紀(jì)最大的只有一人,所以只有丙才是年紀(jì)最大的,故假設(shè)成立,年紀(jì)最大的是丙.綜上所述,年紀(jì)最大的是丙故選:C.【題目點(diǎn)撥】本題考查合情推理,解題時可從一種情形出發(fā),推理出矛盾的結(jié)論,說明這種情形不會發(fā)生,考查了分析能力和推理能力,屬于中檔題.10、D【解題分析】分析:先研究函數(shù)的奇偶性,再研究函數(shù)在上的符號,即可判斷選擇.詳解:令,因?yàn)?,所以為奇函?shù),排除選項(xiàng)A,B;因?yàn)闀r,,所以排除選項(xiàng)C,選D.點(diǎn)睛:有關(guān)函數(shù)圖象的識別問題的常見題型及解題思路:(1)由函數(shù)的定義域,判斷圖象的左、右位置,由函數(shù)的值域,判斷圖象的上、下位置;(2)由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)由函數(shù)的奇偶性,判斷圖象的對稱性;(4)由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).11、D【解題分析】
依題意,設(shè),由,得,再一一驗(yàn)證.【題目詳解】設(shè),因?yàn)?,所以,?jīng)驗(yàn)證不滿足,故選:D.【題目點(diǎn)撥】本題主要考查了復(fù)數(shù)的概念、復(fù)數(shù)的幾何意義,還考查了推理論證能力,屬于基礎(chǔ)題.12、D【解題分析】
利用已知條件,表示出向量,然后求解向量的數(shù)量積.【題目詳解】在中,,,,點(diǎn)滿足,可得則==【題目點(diǎn)撥】本題考查了向量的數(shù)量積運(yùn)算,關(guān)鍵是利用基向量表示所求向量.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
設(shè)以直線為漸近線的雙曲線的方程為,再由雙曲線經(jīng)過拋物線焦點(diǎn),能求出雙曲線方程.【題目詳解】解:設(shè)以直線為漸近線的雙曲線的方程為,∵雙曲線經(jīng)過拋物線焦點(diǎn),∴,∴雙曲線方程為,故答案為:.【題目點(diǎn)撥】本題主要考查雙曲線方程的求法,考查拋物線、雙曲線簡單性質(zhì)的合理運(yùn)用,屬于中檔題.14、【解題分析】
二面角平面角為,點(diǎn)Q到底面的距離為,點(diǎn)Q到定直線得距離為d,則.再由點(diǎn)Q到底面的距離與到點(diǎn)P的距離之比為正常數(shù)k,可得,由此可得,則由可求k值.【題目詳解】解:如圖,設(shè)二面角平面角為,點(diǎn)Q到底面的距離為,點(diǎn)Q到定直線的距離為d,則,即.∵點(diǎn)Q到底面的距離與到點(diǎn)P的距離之比為正常數(shù)k,∴,則,∵動點(diǎn)Q的軌跡是拋物線,∴,即則.∴二面角的平面角的余弦值為解得:().故答案為:.【題目點(diǎn)撥】本題考查了四棱錐的結(jié)構(gòu)特征,由四棱錐的側(cè)面與底面的夾角求參數(shù)值,屬于中檔題.15、【解題分析】
設(shè),由橢圓和雙曲線的定義得到,根據(jù)是以為底邊的等腰三角形,得到,從而有,根據(jù),得到,再利用導(dǎo)數(shù)法求的范圍.【題目詳解】設(shè),由橢圓的定義得,由雙曲線的定義得,所以,因?yàn)槭且詾榈走叺牡妊切?,所以,即,因?yàn)?,所以,因?yàn)?,所以,所以,即,而,因?yàn)?,所以在上遞增,所以.故答案為:【題目點(diǎn)撥】本題主要考查橢圓,雙曲線的定義和幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.16、【解題分析】
根據(jù)已知條件計(jì)算出,結(jié)合得出,利用基本不等式可得出的取值范圍,利用平面向量的數(shù)量積公式可求得的取值范圍,進(jìn)而可得出的取值范圍.【題目詳解】,,,由得,,由基本不等式可得,,,,,因此,的取值范圍為.故答案為:.【題目點(diǎn)撥】本題考查利用向量的模求解平面向量夾角的取值范圍,考查計(jì)算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、另一個特征值為,對應(yīng)的一個特征向量【解題分析】
根據(jù)特征多項(xiàng)式的一個零點(diǎn)為3,可得,再回代到方程即可解出另一個特征值為,最后利用求特征向量的一般步驟,可求出其對應(yīng)的一個特征向量.【題目詳解】矩陣的特征多項(xiàng)式為:,是方程的一個根,,解得,即方程即,,可得另一個特征值為:,設(shè)對應(yīng)的一個特征向量為:則由,得得,令,則,所以矩陣另一個特征值為,對應(yīng)的一個特征向量【題目點(diǎn)撥】本題考查了矩陣的特征值以及特征向量,需掌握特征多項(xiàng)式的計(jì)算形式,屬于基礎(chǔ)題.18、(1)證明見解析(2)【解題分析】
(1)取中點(diǎn),連結(jié),證明平面得到答案.(2)如圖所示,建立空間直角坐標(biāo)系,為平面的一個法向量,平面的一個法向量為,計(jì)算夾角得到答案.【題目詳解】(1)取中點(diǎn),連結(jié),,,,,為直角,,平面,平面,∴面面.(2)如圖所示,建立空間直角坐標(biāo)系,則,可取為平面的一個法向量.設(shè)平面的一個法向量為.則,其中,,不妨取,則..為銳二面角,∴二面角的余弦值為.【題目點(diǎn)撥】本題考查了面面垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.19、(1)(2)【解題分析】
分析:(1)利用正弦定理以及誘導(dǎo)公式與和角公式,結(jié)合特殊角的三角函數(shù)值,求得角C;(2)運(yùn)用向量的平方就是向量模的平方,以及向量數(shù)量積的定義,結(jié)合基本不等式,求得的最大值,再由三角形的面積公式計(jì)算即可得到所求的值.詳解:(1)∵,,(Ⅱ)取中點(diǎn),則,在中,,(注:也可將兩邊平方)即,,所以,當(dāng)且僅當(dāng)時取等號.此時,其最大值為.點(diǎn)睛:該題考查的是有關(guān)三角形的問題,涉及到的知識點(diǎn)有正弦定理,誘導(dǎo)公式,和角公式,向量的平方即為向量模的平方,基本不等式,三角形的面積公式,在解題的過程中,需要正確使用相關(guān)的公式進(jìn)行運(yùn)算即可求得結(jié)果.20、(1)(2)證明見解析【解題分析】
(1)分類討論,去絕對值求出函數(shù)的解析式,根據(jù)一次函數(shù)的性質(zhì),得出的單調(diào)性,得出取最小值,即可求的值;(2)由(1)得出,利用“乘1法”,令,化簡后利用基本不等式求出的最小值,即可證出.【題目詳解】(1)解:當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.所以當(dāng)時,取最小值.(2)證明:由(1)可知.要證明:,即證,因?yàn)椋?,為正?shí)數(shù),所以.當(dāng)且僅當(dāng),即,,時取等號,所以.【題目點(diǎn)撥】本題考查絕對值不等式和基本不等式的應(yīng)用,還運(yùn)用“乘1法”和分類討論思想,屬于中檔題.21、(1)(2)32【解題分析】
利用絕對值不等式的解法求出不等式的解集,得到關(guān)于的方程,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024個人的簡單借款合同
- 國際貿(mào)易協(xié)議樣本
- 廠房租賃合同范例
- 特色農(nóng)產(chǎn)品胡柚購銷合同法律問題探討
- 共同投資開設(shè)武術(shù)館協(xié)議
- 標(biāo)準(zhǔn)入職協(xié)議書范例
- 旅行社與導(dǎo)游勞動合同范本
- 2023年高考地理第一次模擬考試卷-(湖南A卷)(全解全析)
- 房地產(chǎn)代理合同模板
- 2024年建筑渣土運(yùn)輸合同范文
- 山西省太原市2024-2025學(xué)年高三上學(xué)期期中物理試卷(含答案)
- 酒店崗位招聘面試題與參考回答2025年
- (統(tǒng)編2024版)道德與法治七上10.1愛護(hù)身體 課件
- GB/T 30391-2024花椒
- 供電線路維護(hù)合同
- 胸部術(shù)后護(hù)理科普
- 鞋子工廠供貨合同模板
- 2024碼頭租賃合同范本
- 木材采運(yùn)智能決策支持系統(tǒng)
- 【產(chǎn)業(yè)圖譜】2024年青島市重點(diǎn)產(chǎn)業(yè)規(guī)劃布局全景圖譜(附各地區(qū)重點(diǎn)產(chǎn)業(yè)、產(chǎn)業(yè)體系布局、未來產(chǎn)業(yè)發(fā)展規(guī)劃等)
- 上海市市轄區(qū)(2024年-2025年小學(xué)四年級語文)部編版期末考試(下學(xué)期)試卷及答案
評論
0/150
提交評論