河北省保定市曲陽縣一中2024屆第二學期高三教學質(zhì)量檢測試題數(shù)學試題試卷_第1頁
河北省保定市曲陽縣一中2024屆第二學期高三教學質(zhì)量檢測試題數(shù)學試題試卷_第2頁
河北省保定市曲陽縣一中2024屆第二學期高三教學質(zhì)量檢測試題數(shù)學試題試卷_第3頁
河北省保定市曲陽縣一中2024屆第二學期高三教學質(zhì)量檢測試題數(shù)學試題試卷_第4頁
河北省保定市曲陽縣一中2024屆第二學期高三教學質(zhì)量檢測試題數(shù)學試題試卷_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

河北省保定市曲陽縣一中2024屆第二學期高三教學質(zhì)量檢測試題數(shù)學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,這是某校高三年級甲、乙兩班在上學期的5次數(shù)學測試的班級平均分的莖葉圖,則下列說法不正確的是()A.甲班的數(shù)學成績平均分的平均水平高于乙班B.甲班的數(shù)學成績的平均分比乙班穩(wěn)定C.甲班的數(shù)學成績平均分的中位數(shù)高于乙班D.甲、乙兩班這5次數(shù)學測試的總平均分是1032.已知復數(shù),若,則的值為()A.1 B. C. D.3.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l(fā)⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件4.設函數(shù)是奇函數(shù)的導函數(shù),當時,,則使得成立的的取值范圍是()A. B.C. D.5.如圖所示,直三棱柱的高為4,底面邊長分別是5,12,13,當球與上底面三條棱都相切時球心到下底面距離為8,則球的體積為()A.1605π3 B.6426.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.77.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,28.以,為直徑的圓的方程是A. B.C. D.9.將3個黑球3個白球和1個紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種10.下列四個圖象可能是函數(shù)圖象的是()A. B. C. D.11.設為等差數(shù)列的前項和,若,,則的最小值為()A. B. C. D.12.已知,則()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.如果橢圓的對稱軸為坐標軸,短軸的一個端點與兩焦點組成一正三角形,焦點在x軸上,且=,那么橢圓的方程是.14.函數(shù)的單調(diào)增區(qū)間為__________.15.假設10公里長跑,甲跑出優(yōu)秀的概率為,乙跑出優(yōu)秀的概率為,丙跑出優(yōu)秀的概率為,則甲、乙、丙三人同時參加10公里長跑,剛好有2人跑出優(yōu)秀的概率為________.16.利用等面積法可以推導出在邊長為a的正三角形內(nèi)任意一點到三邊的距離之和為定值,類比上述結論,利用等體積法進行推導,在棱長為a的正四面體內(nèi)任意一點到四個面的距離之和也為定值,則這個定值是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某調(diào)查機構對某校學生做了一個是否同意生“二孩”抽樣調(diào)查,該調(diào)查機構從該校隨機抽查了100名不同性別的學生,調(diào)查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”,現(xiàn)已得知100人中同意父母生“二孩”占60%,統(tǒng)計情況如下表:同意不同意合計男生a5女生40d合計100(1)求a,d的值,根據(jù)以上數(shù)據(jù),能否有97.5%的把握認為是否同意父母生“二孩”與性別有關?請說明理由;(2)將上述調(diào)查所得的頻率視為概率,現(xiàn)在從所有學生中,采用隨機抽樣的方法抽取4位學生進行長期跟蹤調(diào)查,記被抽取的4位學生中持“同意”態(tài)度的人數(shù)為X,求X的分布列及數(shù)學期望.附:0.150.1000.0500.0250.0102.0722.7063.8415.0246.63518.(12分)這次新冠肺炎疫情,是新中國成立以來在我國發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經(jīng)歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現(xiàn)出既有責任擔當之勇、又有科學防控之智.某校高三學生也展開了對這次疫情的研究,一名同學在數(shù)據(jù)統(tǒng)計中發(fā)現(xiàn),從2020年2月1日至2月7日期間,日期和全國累計報告確診病例數(shù)量(單位:萬人)之間的關系如下表:日期1234567全國累計報告確診病例數(shù)量(萬人)1.41.72.02.42.83.13.5(1)根據(jù)表中的數(shù)據(jù),運用相關系數(shù)進行分析說明,是否可以用線性回歸模型擬合與的關系?(2)求出關于的線性回歸方程(系數(shù)精確到0.01).并預測2月10日全國累計報告確診病例數(shù).參考數(shù)據(jù):,,,.參考公式:相關系數(shù)回歸方程中斜率和截距的最小二乘估計公式分別為:,.19.(12分)已知函數(shù).(1)設,求函數(shù)的單調(diào)區(qū)間,并證明函數(shù)有唯一零點.(2)若函數(shù)在區(qū)間上不單調(diào),證明:.20.(12分)已知首項為2的數(shù)列滿足.(1)證明:數(shù)列是等差數(shù)列.(2)令,求數(shù)列的前項和.21.(12分)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.22.(10分)已知函數(shù)的最大值為,其中.(1)求實數(shù)的值;(2)若求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】

計算兩班的平均值,中位數(shù),方差得到正確,兩班人數(shù)不知道,所以兩班的總平均分無法計算,錯誤,得到答案.【題目詳解】由題意可得甲班的平均分是104,中位數(shù)是103,方差是26.4;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因為甲、乙兩班的人數(shù)不知道,所以兩班的總平均分無法計算,故D錯誤.故選:.【題目點撥】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學生的計算能力和應用能力.2、D【解題分析】由復數(shù)模的定義可得:,求解關于實數(shù)的方程可得:.本題選擇D選項.3、A【解題分析】

根據(jù)充分條件和必要條件的定義,結合線面垂直的性質(zhì)進行判斷即可.【題目詳解】當m⊥平面α時,若l∥α”則“l(fā)⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l(fā)∥α”是“l(fā)⊥m”充分不必要條件,故選:A.【題目點撥】本題主要考查充分條件和必要條件的判斷,結合線面垂直的性質(zhì)和定義是解決本題的關鍵.難度不大,屬于基礎題4、D【解題分析】構造函數(shù),令,則,由可得,則是區(qū)間上的單調(diào)遞減函數(shù),且,當x∈(0,1)時,g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;當x∈(1,+∞)時,g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函數(shù),當x∈(-1,0)時,f(x)>0,(x2-1)f(x)<0∴當x∈(-∞,-1)時,f(x)>0,(x2-1)f(x)>0.綜上所述,使得(x2-1)f(x)>0成立的x的取值范圍是.本題選擇D選項.點睛:函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它的應用貫穿于整個高中數(shù)學的教學之中.某些數(shù)學問題從表面上看似乎與函數(shù)的單調(diào)性無關,但如果我們能挖掘其內(nèi)在聯(lián)系,抓住其本質(zhì),那么運用函數(shù)的單調(diào)性解題,能起到化難為易、化繁為簡的作用.因此對函數(shù)的單調(diào)性進行全面、準確的認識,并掌握好使用的技巧和方法,這是非常必要的.根據(jù)題目的特點,構造一個適當?shù)暮瘮?shù),利用它的單調(diào)性進行解題,是一種常用技巧.許多問題,如果運用這種思想去解決,往往能獲得簡潔明快的思路,有著非凡的功效.5、A【解題分析】

設球心為O,三棱柱的上底面ΔA1B1C1的內(nèi)切圓的圓心為O1,該圓與邊B【題目詳解】如圖,設三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設球心為O,則由球的幾何知識得ΔOO1M所以OM=2即球O的半徑為25所以球O的體積為43故選A.【題目點撥】本題考查與球有關的組合體的問題,解答本題的關鍵有兩個:(1)構造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內(nèi)求出球的半徑,這是解決與球有關的問題時常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內(nèi)切圓的半徑r=a+b-c6、C【解題分析】

根據(jù)程序框圖程序運算即可得.【題目詳解】依程序運算可得:,故選:C【題目點撥】本題主要考查了程序框圖的計算,解題的關鍵是理解程序框圖運行的過程.7、C【解題分析】

先求出集合U,再根據(jù)補集的定義求出結果即可.【題目詳解】由題意得U=x|∵A=1,2∴CU故選C.【題目點撥】本題考查集合補集的運算,求解的關鍵是正確求出集合U和熟悉補集的定義,屬于簡單題.8、A【解題分析】

設圓的標準方程,利用待定系數(shù)法一一求出,從而求出圓的方程.【題目詳解】設圓的標準方程為,由題意得圓心為,的中點,根據(jù)中點坐標公式可得,,又,所以圓的標準方程為:,化簡整理得,所以本題答案為A.【題目點撥】本題考查待定系數(shù)法求圓的方程,解題的關鍵是假設圓的標準方程,建立方程組,屬于基礎題.9、D【解題分析】

采取分類計數(shù)和分步計數(shù)相結合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個相同顏色的排在一起【題目詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時將紅球插入6個球組成的7個空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時紅球只能插入兩個相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【題目點撥】本題考查排列組合公式的具體應用,插空法的應用,屬于基礎題10、C【解題分析】

首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個單位而得到,因為為奇函數(shù),即可得到函數(shù)圖象關于對稱,即可排除A、D,再根據(jù)時函數(shù)值,排除B,即可得解.【題目詳解】∵的定義域為,其圖象可由的圖象沿軸向左平移1個單位而得到,∵為奇函數(shù),圖象關于原點對稱,∴的圖象關于點成中心對稱.可排除A、D項.當時,,∴B項不正確.故選:C【題目點撥】本題考查函數(shù)的性質(zhì)與識圖能力,一般根據(jù)四個選擇項來判斷對應的函數(shù)性質(zhì),即可排除三個不符的選項,屬于中檔題.11、C【解題分析】

根據(jù)已知條件求得等差數(shù)列的通項公式,判斷出最小時的值,由此求得的最小值.【題目詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C【題目點撥】本小題主要考查等差數(shù)列通項公式和前項和公式的基本量計算,考查等差數(shù)列前項和最值的求法,屬于基礎題.12、B【解題分析】

結合求得的值,由此化簡所求表達式,求得表達式的值.【題目詳解】由,以及,解得..故選:B【題目點撥】本小題主要考查利用同角三角函數(shù)的基本關系式化簡求值,考查二倍角公式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

由題意可設橢圓方程為:∵短軸的一個端點與兩焦點組成一正三角形,焦點在軸上∴又,∴,∴橢圓的方程為,故答案為.考點:橢圓的標準方程,解三角形以及解方程組的相關知識.14、【解題分析】

先求出導數(shù),再在定義域上考慮導數(shù)的符號為正時對應的的集合,從而可得函數(shù)的單調(diào)增區(qū)間.【題目詳解】函數(shù)的定義域為.,令,則,故函數(shù)的單調(diào)增區(qū)間為:.故答案為:.【題目點撥】本題考查導數(shù)在函數(shù)單調(diào)性中的應用,注意先考慮函數(shù)的定義域,再考慮導數(shù)在定義域上的符號,本題屬于基礎題.15、【解題分析】

分跑出優(yōu)秀的人為:甲、乙和甲、丙和乙、丙三種情況分別計算再求和即可.【題目詳解】剛好有2人跑出優(yōu)秀有三種情況:其一是只有甲、乙兩人跑出優(yōu)秀的概率為;其二是只有甲、丙兩人跑出優(yōu)秀的概率為;其三是只有乙、丙兩人跑出優(yōu)秀的概率為,三種情況相加得.即剛好有2人跑出優(yōu)秀的概率為.故答案為:【題目點撥】本題主要考查了分類方法求解事件概率的問題,屬于基礎題.16、【解題分析】

計算正四面體的高,并計算該正四面體的體積,利用等體積法,可得結果.【題目詳解】作平面,為的重心如圖則,所以設正四面體內(nèi)任意一點到四個面的距離之和為則故答案為:【題目點撥】本題考查類比推理的應用,還考查等體積法,考驗理解能力以及計算能力,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),有97.5%的把握認為是否同意父母生“二孩”與“性別”有關;(2)詳見解析.【解題分析】

(1)根據(jù)表格及同意父母生“二孩”占60%可求出,,根據(jù)公式計算結果即可確定有97.5%的把握認為是否同意父母生“二孩”與“性別”有關(2)由題意可知X服從二項分布,利用公式計算概率及期望即可.【題目詳解】(1)因為100人中同意父母生“二孩”占60%,所以,文(2)由列聯(lián)表可得而所以有97.5%的把握認為是否同意父母生“二孩”與“性別”有關(2)①由題知持“同意”態(tài)度的學生的頻率為,即從學生中任意抽取到一名持“同意”態(tài)度的學生的概率為.由于總體容量很大,故X服從二項分布,即從而X的分布列為X01234X的數(shù)學期望為【題目點撥】本題主要考查了相關性檢驗、二項分布,屬于中檔題.18、(1)可以用線性回歸模型擬合與的關系;(2),預測2月10日全國累計報告確診病例數(shù)約有4.5萬人.【解題分析】

(1)根據(jù)已知數(shù)據(jù),利用公式求得,再根據(jù)的值越大說明它們的線性相關性越高來判斷.(2)由(1)的相關數(shù)據(jù),求得,,寫出回歸方程,然后將代入回歸方程求解.【題目詳解】(1)由已知數(shù)據(jù)得,,,所以,,所以.因為與的相關近似為0.99,說明它們的線性相關性相當高,從而可以用線性回歸模型擬合與的關系.(2)由(1)得,,,所以,關于的回歸方程為:,2月10日,即代入回歸方程得:.所以預測2月10日全國累計報告確診病例數(shù)約有4.5萬人.【題目點撥】本題主要考查線性回歸分析和回歸方程的求解及應用,還考查了運算求解的能力,屬于中檔題.19、(1)為增區(qū)間;為減區(qū)間.見解析(2)見解析【解題分析】

(1)先求得的定義域,然后利用導數(shù)求得的單調(diào)區(qū)間,結合零點存在性定理判斷出有唯一零點.(2)求得的導函數(shù),結合在區(qū)間上不單調(diào),證得,通過證明,證得成立.【題目詳解】(1)∵函數(shù)的定義域為,由,解得為增區(qū)間;由解得為減區(qū)間.下面證明函數(shù)只有一個零點:∵,所以函數(shù)在區(qū)間內(nèi)有零點,∵,函數(shù)在區(qū)間上沒有零點,故函數(shù)只有一個零點.(2)證明:函數(shù),則當時,,不符合題意;當時,令,則,所以在上單調(diào)增函數(shù),而,又∵區(qū)間上不單調(diào),所以存在,使得在上有一個零點,即,所以,且,即兩邊取自然對數(shù),得即,要證,即證,先證明:,令,則∴在上單調(diào)遞增,即,∴①在①中令,∴令∴,即即,∴.【題目點撥】本小題主要考查利用導數(shù)研究函數(shù)的單調(diào)區(qū)間和零點,考查利用導數(shù)證明不等式,考查分類討論的數(shù)學思想方法,考查化歸與轉化的數(shù)學思想方法,屬于難題.20、(1)見解析;(2)【解題分析】

(1)由原式可得,等式兩端同時除以,可得到,即可證明結論;(2)由(1)可求得的表達式,進而可求得的表達式,然后求出的前項和即可.【題目詳解】(1)證明:因為,所以,所以,從而,因為,所以,故數(shù)列是首項為1,公差為1的等差數(shù)列.(2)由(1)可知,則,因為,所以,則.【題目點撥】本題考查了等差數(shù)列的證明,考查了等差數(shù)列及等比數(shù)列的前項和公式的應用,考查了學生的計算求解能力,屬于中檔題.21、(1).(2).【解題分析】

(1)由前三年六月份各天的最高氣溫數(shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當溫度大于等于25℃時,需求量為500,求出Y=900元;當溫度在[20,25)℃時,需求量為300,求出Y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論