




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
山東省滕州實驗中學2024屆高考考前沖刺必刷卷(五)全國I卷數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.2.設復數(shù)滿足,在復平面內(nèi)對應的點為,則()A. B. C. D.3.甲乙丙丁四人中,甲說:我年紀最大,乙說:我年紀最大,丙說:乙年紀最大,丁說:我不是年紀最大的,若這四人中只有一個人說的是真話,則年紀最大的是()A.甲 B.乙 C.丙 D.丁4.已知x,y滿足不等式組,則點所在區(qū)域的面積是()A.1 B.2 C. D.5.若(1+2ai)i=1-bi,其中a,b∈R,則|a+bi|=().A. B. C. D.56.點是單位圓上不同的三點,線段與線段交于圓內(nèi)一點M,若,則的最小值為()A. B. C. D.7.是虛數(shù)單位,則()A.1 B.2 C. D.8.設,,則的值為()A. B.C. D.9.已知函數(shù),,若對,且,使得,則實數(shù)的取值范圍是()A. B. C. D.10.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.11.正項等比數(shù)列中的、是函數(shù)的極值點,則()A. B.1 C. D.212.某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為,圓柱表面上的點在左視圖上的對應點為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若恒成立,則的取值范圍是___________.14.若,且,則的最小值是______.15.在的二項展開式中,所有項的系數(shù)之和為1024,則展開式常數(shù)項的值等于_______.16.在直角三角形中,為直角,,點在線段上,且,若,則的正切值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若函數(shù)在處取得極值1,證明:(2)若恒成立,求實數(shù)的取值范圍.18.(12分)已知橢圓,點,點滿足(其中為坐標原點),點在橢圓上.(1)求橢圓的標準方程;(2)設橢圓的右焦點為,若不經(jīng)過點的直線與橢圓交于兩點.且與圓相切.的周長是否為定值?若是,求出定值;若不是,請說明理由.19.(12分)如圖,在直角梯形中,,,,為的中點,沿將折起,使得點到點位置,且,為的中點,是上的動點(與點,不重合).(Ⅰ)證明:平面平面垂直;(Ⅱ)是否存在點,使得二面角的余弦值?若存在,確定點位置;若不存在,說明理由.20.(12分)在銳角中,角A,B,C所對的邊分別為a,b,c.已知.(1)求的值;(2)當,且時,求的面積.21.(12分)底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.若,.(1)求證:;(2)求二面角的正弦值.22.(10分)如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現(xiàn)將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】
先通過降冪公式和輔助角法將函數(shù)轉(zhuǎn)化為,再求最值.【題目詳解】已知函數(shù)f(x)=sin2x+sin2(x),=,=,因為,所以f(x)的最小值為.故選:A【題目點撥】本題主要考查倍角公式及兩角和與差的三角函數(shù)的逆用,還考查了運算求解的能力,屬于中檔題.2、B【解題分析】
設,根據(jù)復數(shù)的幾何意義得到、的關系式,即可得解;【題目詳解】解:設∵,∴,解得.故選:B【題目點撥】本題考查復數(shù)的幾何意義的應用,屬于基礎題.3、C【解題分析】
分別假設甲乙丙丁說的是真話,結(jié)合其他人的說法,看是否只有一個說的是真話,即可求得年紀最大者,即可求得答案.【題目詳解】①假設甲說的是真話,則年紀最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個人說的是真話,故甲說的不是真話,年紀最大的不是甲;②假設乙說的是真話,則年紀最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個人說的是真話,故乙說謊,年紀最大的也不是乙;③假設丙說的是真話,則年紀最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個人說的是真話,故丙在說謊,年紀最大的也不是乙;④假設丁說的是真話,則年紀最大的不是丁,而已知只有一個人說的是真話,那么甲也說謊,說明甲也不是年紀最大的,同時乙也說謊,說明乙也不是年紀最大的,年紀最大的只有一人,所以只有丙才是年紀最大的,故假設成立,年紀最大的是丙.綜上所述,年紀最大的是丙故選:C.【題目點撥】本題考查合情推理,解題時可從一種情形出發(fā),推理出矛盾的結(jié)論,說明這種情形不會發(fā)生,考查了分析能力和推理能力,屬于中檔題.4、C【解題分析】
畫出不等式表示的平面區(qū)域,計算面積即可.【題目詳解】不等式表示的平面區(qū)域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,,,,所以陰影部分面積.故選:C.【題目點撥】本題考查不等式組表示的平面區(qū)域面積的求法,考查數(shù)形結(jié)合思想和運算能力,屬于??碱}.5、C【解題分析】試題分析:由已知,-2a+i=1-bi,根據(jù)復數(shù)相等的充要條件,有a=-,b=-1所以|a+bi|=,選C考點:復數(shù)的代數(shù)運算,復數(shù)相等的充要條件,復數(shù)的模6、D【解題分析】
由題意得,再利用基本不等式即可求解.【題目詳解】將平方得,(當且僅當時等號成立),,的最小值為,故選:D.【題目點撥】本題主要考查平面向量數(shù)量積的應用,考查基本不等式的應用,屬于中檔題.7、C【解題分析】
由復數(shù)除法的運算法則求出,再由模長公式,即可求解.【題目詳解】由.故選:C.【題目點撥】本題考查復數(shù)的除法和模,屬于基礎題.8、D【解題分析】
利用倍角公式求得的值,利用誘導公式求得的值,利用同角三角函數(shù)關系式求得的值,進而求得的值,最后利用正切差角公式求得結(jié)果.【題目詳解】,,,,,,,,故選:D.【題目點撥】該題考查的是有關三角函數(shù)求值問題,涉及到的知識點有誘導公式,正切倍角公式,同角三角函數(shù)關系式,正切差角公式,屬于基礎題目.9、D【解題分析】
先求出的值域,再利用導數(shù)討論函數(shù)在區(qū)間上的單調(diào)性,結(jié)合函數(shù)值域,由方程有兩個根求參數(shù)范圍即可.【題目詳解】因為,故,當時,,故在區(qū)間上單調(diào)遞減;當時,,故在區(qū)間上單調(diào)遞增;當時,令,解得,故在區(qū)間單調(diào)遞減,在區(qū)間上單調(diào)遞增.又,且當趨近于零時,趨近于正無窮;對函數(shù),當時,;根據(jù)題意,對,且,使得成立,只需,即可得,解得.故選:D.【題目點撥】本題考查利用導數(shù)研究由方程根的個數(shù)求參數(shù)范圍的問題,涉及利用導數(shù)研究函數(shù)單調(diào)性以及函數(shù)值域的問題,屬綜合困難題.10、B【解題分析】
由題意建立空間直角坐標系,表示出各點坐標后,利用即可得解.【題目詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.【題目點撥】本題考查了空間向量的應用,考查了空間想象能力,屬于基礎題.11、B【解題分析】
根據(jù)可導函數(shù)在極值點處的導數(shù)值為,得出,再由等比數(shù)列的性質(zhì)可得.【題目詳解】解:依題意、是函數(shù)的極值點,也就是的兩個根∴又是正項等比數(shù)列,所以∴.故選:B【題目點撥】本題主要考查了等比數(shù)列下標和性質(zhì)以應用,屬于中檔題.12、B【解題分析】
首先根據(jù)題中所給的三視圖,得到點M和點N在圓柱上所處的位置,將圓柱的側(cè)面展開圖平鋪,點M、N在其四分之一的矩形的對角線的端點處,根據(jù)平面上兩點間直線段最短,利用勾股定理,求得結(jié)果.【題目詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開圖平鋪,可以確定點M和點N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點處,所以所求的最短路徑的長度為,故選B.點睛:該題考查的是有關幾何體的表面上兩點之間的最短距離的求解問題,在解題的過程中,需要明確兩個點在幾何體上所處的位置,再利用平面上兩點間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關特征求得結(jié)果.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
求導得到,討論和兩種情況,計算時,函數(shù)在上單調(diào)遞減,故,不符合,排除,得到答案。【題目詳解】因為,所以,因為,所以.當,即時,,則在上單調(diào)遞增,從而,故符合題意;當,即時,因為在上單調(diào)遞增,且,所以存在唯一的,使得.令,得,則在上單調(diào)遞減,從而,故不符合題意.綜上,的取值范圍是.故答案為:.【題目點撥】本題考查了不等式恒成立問題,轉(zhuǎn)化為函數(shù)的最值問題是解題的關鍵.14、8【解題分析】
利用的代換,將寫成,然后根據(jù)基本不等式求解最小值.【題目詳解】因為(即取等號),所以最小值為.【題目點撥】已知,求解()的最小值的處理方法:利用,得到,展開后利用基本不等式求解,注意取等號的條件.15、【解題分析】
利用展開式所有項系數(shù)的和得n=5,再利用二項式展開式的通項公式,求得展開式中的常數(shù)項.【題目詳解】因為的二項展開式中,所有項的系數(shù)之和為4n=1024,n=5,故的展開式的通項公式為Tr+1=C·35-r,令,解得r=4,可得常數(shù)項為T5=C·3=15,故填15.【題目點撥】本題主要考查了二項式定理的應用、二項式系數(shù)的性質(zhì),二項式展開式的通項公式,屬于中檔題.16、3【解題分析】
在直角三角形中設,,,利用兩角差的正切公式求解.【題目詳解】設,,則,故.故答案為:3【題目點撥】此題考查在直角三角形中求角的正切值,關鍵在于合理構(gòu)造角的和差關系,其本質(zhì)是利用兩角差的正切公式求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解;(2)【解題分析】
(1)求出函數(shù)的導函數(shù),由在處取得極值1,可得且.解出,構(gòu)造函數(shù),分析其單調(diào)性,結(jié)合,即可得到的范圍,命題得證;
(2)由分離參數(shù),得到恒成立,構(gòu)造函數(shù),求導函數(shù),再構(gòu)造函數(shù),進行二次求導.由知,則在上單調(diào)遞增.根據(jù)零點存在定理可知有唯一零點,且.由此判斷出時,單調(diào)遞減,時,單調(diào)遞增,則,即.由得,再次構(gòu)造函數(shù),求導分析單調(diào)性,從而得,即,最終求得,則.【題目詳解】解:(1)由題知,∵函數(shù)在,處取得極值1,,且,,,令,則為增函數(shù),,即成立.(2)不等式恒成立,即不等式恒成立,即恒成立,令,則令,則,,,在上單調(diào)遞增,且,有唯一零點,且,當時,,,單調(diào)遞減;當時,,,單調(diào)遞增.,由整理得,令,則方程等價于而在上恒大于零,在上單調(diào)遞增,.,∴實數(shù)的取值范圍為.【題目點撥】本題考查了函數(shù)的極值,利用導函數(shù)判斷函數(shù)的單調(diào)性,函數(shù)的零點存在定理,證明不等式,解決不等式恒成立問題.其中多次構(gòu)造函數(shù),是解題的關鍵,屬于綜合性很強的難題.18、(1)(2)是,【解題分析】
(1)設,根據(jù)條件可求出的坐標,再利用在橢圓上,代入橢圓方程求出即可;(2)設運用勾股定理和點滿足橢圓方程,求出,,再利用焦半徑公式表示出,進而求出周長為定值.【題目詳解】(1)設,因為,即則,即,因為均在上,代入得,解得,所以橢圓的方程為;(2)由(1)得,作出示意圖,設切點為,則,同理即,所以,又,則的周長,所以周長為定值.【題目點撥】標準方程的求解,橢圓中的定值問題,考查焦半徑公式的運用,考查邏輯推理能力和運算求解能力,難度較難.19、(Ⅰ)見解析(Ⅱ)存在,此時為的中點.【解題分析】
(Ⅰ)證明平面,得到平面平面,故平面平面,平面,得到答案.(Ⅱ)假設存在點滿足題意,過作于,平面,過作于,連接,則,過作于,連接,是二面角的平面角,設,,計算得到答案.【題目詳解】(Ⅰ)∵,,,∴平面.又平面,∴平面平面,而平面,,∴平面平面,由,知,可知平面,又平面,∴平面平面.(Ⅱ)假設存在點滿足題意,過作于,由知,易證平面,所以平面,過作于,連接,則(三垂線定理),即是二面角的平面角,不妨設,則,在中,設(),由得,即,得,∴,依題意知,即,解得,此時為的中點.綜上知,存在點,使得二面角的余弦值,此時為的中點.【題目點撥】本題考查了面面垂直,根據(jù)二面角確定點的位置,意在考查學生的空間想象能力和計算能力,也可以建立空間直角坐標系解得答案.20、(1);(2)【解題分析】
(1)利用二倍角公式求解即可,注意隱含條件.(2)利用(1)中的結(jié)論,結(jié)合正弦定理和同角三角函數(shù)的關系易得的值,又由求出的值,最后由正弦定理求出的值,根據(jù)三角形的面積公式即可計算得出.【題目詳解】(1)由已知可得,所以,因為在銳角中,,所以(2)因為,所以,因為是銳角三角形,所以,所以.由正弦定理可得:,所以,所以【題目點撥】此類問題是高考的??碱}型,主要考查了正弦定理、三角函數(shù)以及三角恒等變換等知識,同時考查了學生的基本運算能力和利用三角公式進行恒等變換的技能,屬于中檔題.21、(1)見解析;(2)【解題分析】
(1)先由線面垂直的判定定理證明平面,再證明線線垂直即可;(2)建立空間直角坐標系,求平面的一個法向量與平面的一個法向量,再利用向量數(shù)量積運算即可.【題目詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國聚苯硫醚市場十三五規(guī)劃及投資風險評估報告
- 2025-2030年中國祛斑養(yǎng)顏保健品行業(yè)運行狀況及前景趨勢分析報告
- 2025-2030年中國電腦電源市場運行動態(tài)與營銷策略研究報告
- 邢臺學院《工程結(jié)構(gòu)抗震設計原理》2023-2024學年第二學期期末試卷
- 湖北民族大學《數(shù)據(jù)庫原理及應用》2023-2024學年第二學期期末試卷
- 云南師范大學《電力系統(tǒng)分析》2023-2024學年第二學期期末試卷
- 武漢科技職業(yè)學院《動物試驗設計與統(tǒng)計分析》2023-2024學年第二學期期末試卷
- 四川藝術職業(yè)學院《針灸學(實驗)》2023-2024學年第二學期期末試卷
- 高考英語單詞3500分類記憶(精編版)
- 林規(guī)發(fā)〔2016〕58號防護林造林工程投資估算指標
- 非公開發(fā)行公司債券的法律意見書模版
- 汽車空調(diào)技術與維修教案
- 企業(yè)管理概論-課件全書課件完整版ppt全套教學教程最全電子教案電子講義(最新)
- 餐飲服務食品安全監(jiān)督量化分級動態(tài)等級評定檢查表
- 北師大版語文選修《蕭蕭》ppt課件1
- 大學生職業(yè)素養(yǎng)課件-5第五單元學會有效溝通-PPT課件
- 《談骨氣》課文閱讀(共2頁)
- 病原生物與免疫學(中職)緒論PPT課件
- 新起點小學英語一年級上冊單詞卡片(共23頁)
評論
0/150
提交評論