![1997考研數(shù)四真題及解析_第1頁](http://file4.renrendoc.com/view11/M03/31/07/wKhkGWWM9Q2AWprRAAGybcGsMfs154.jpg)
![1997考研數(shù)四真題及解析_第2頁](http://file4.renrendoc.com/view11/M03/31/07/wKhkGWWM9Q2AWprRAAGybcGsMfs1542.jpg)
![1997考研數(shù)四真題及解析_第3頁](http://file4.renrendoc.com/view11/M03/31/07/wKhkGWWM9Q2AWprRAAGybcGsMfs1543.jpg)
![1997考研數(shù)四真題及解析_第4頁](http://file4.renrendoc.com/view11/M03/31/07/wKhkGWWM9Q2AWprRAAGybcGsMfs1544.jpg)
![1997考研數(shù)四真題及解析_第5頁](http://file4.renrendoc.com/view11/M03/31/07/wKhkGWWM9Q2AWprRAAGybcGsMfs1545.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
BorntowinPAGEPAGE41997年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)四試題一、填空題(本題共5分,每小題3分,滿分15分.把答案在題中橫線上.)(1)設(shè),其中可微,則.(2)設(shè),則.(3)設(shè)階矩陣,則.(4)設(shè)是任意兩個(gè)隨機(jī)事件,則.(5)設(shè)隨機(jī)變量服從參數(shù)為的二項(xiàng)分布,隨機(jī)變量服從參數(shù)為的二項(xiàng)分布.若,則.二、選擇題(本題共5小題,每小題3分,滿分15分.每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)符合題目要求,把所選項(xiàng)前的字母填在題后的括號(hào)內(nèi))(1)設(shè)在點(diǎn)的某鄰域內(nèi)連續(xù),且當(dāng)時(shí),的高價(jià)無窮小,則當(dāng)時(shí),是的()(A)低階無窮小(B)高階無窮小(C)同階但不等價(jià)的無窮小(D)等價(jià)無窮小(2)若,在內(nèi),則在內(nèi)有()(A),(B),(C),(D),(3)設(shè)向量組,,線性無關(guān),則下列向量組中,線性無關(guān)的是()(A),,(B),,(C),,(D),,(4)非齊次線性方程組中未知量個(gè)數(shù)為,方程個(gè)數(shù)為,系數(shù)矩陣的秩為,則()(A)時(shí),方程組有解(B)時(shí),方程組有惟一解(C)時(shí),方程組有惟一解(D)時(shí),方程組有無窮多解(5)設(shè)是一隨機(jī)變量,,,則對(duì)任意常數(shù),必有()(A)(B)(C)(D)三、(本題滿分6分)求極限.四、(本題滿分6分)設(shè)有連續(xù)偏導(dǎo)數(shù),和分別由方程和所確定,求.五、(本題滿分6分)假設(shè)某種商品的需求量是單價(jià)(單位:元)的函數(shù):,商品的總成本是需求量的函數(shù):;每單位商品需要納稅2元,試求使銷售利潤(rùn)最大的商品單價(jià)和最大利潤(rùn)額.六、(本題滿分7分)求曲線,,,所圍成的平面圖形的面積,并求該平面圖形繞軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積.七、(本題滿分7分)設(shè)函數(shù)在內(nèi)連續(xù),且,試證:(1)求的聯(lián)合概率分布;(2)求.1997年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)四試題解析一、填空題(本題共5分,每小題3分,滿分15分.把答案在題中橫線上.)(1)【答案】【解析】題目考察復(fù)合函數(shù)的微分法,利用鏈?zhǔn)椒▌t計(jì)算如下:由可知(2)【答案】【分析】注意本題要求的是個(gè)常數(shù).【解析】令,則,兩邊從0到1作定積分,得.(3)【答案】【解析】把第各行均加至第1行,則第1行為,提取公因式后,再把第1行的-1倍加至第各行,可化為上三角行列式,即.(4)【答案】【解析】根據(jù)事件間運(yùn)算的分配律,有,故如果將直接展開也是一樣的,.所以(5)【答案】【解析】由于兩個(gè)二項(xiàng)分布服從的參數(shù)相等,所以只需通過其中一個(gè)條件確定參數(shù),則另一個(gè)二項(xiàng)分布的參數(shù)就可以確定.因,所以.(通常在求一個(gè)事件概率比較復(fù)雜時(shí),往往我們都考慮通過它的對(duì)立事件來求)又,故.(由于概率是必需小于等于1的,所以開根號(hào)時(shí),只能取正)因此,,故【相關(guān)知識(shí)點(diǎn)】1.二項(xiàng)分布的概率計(jì)算公式:若,則,.二、選擇題(本題共5小題,每小題3分,滿分15分.每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)符合題目要求,把所選項(xiàng)前的字母填在題后的括號(hào)內(nèi))(1)【答案】(B)【分析】由無窮小階的比較的概念可知,只要考察極限即可.【解析】由于,因此,當(dāng)時(shí),是的高階無窮小.故應(yīng)選(B).(2)【答案】(C)【解析】題目考察抽象函數(shù)的凹凸性和單調(diào)性的問題.方法1:由知,的圖形關(guān)于軸對(duì)稱.由在內(nèi),且知,的圖形在內(nèi)單調(diào)上升且是凸的;由對(duì)稱性知,在內(nèi),的圖形單調(diào)下降,且是凸的,所以應(yīng)選(C).方法2:由可知.當(dāng)時(shí),,此時(shí)由題設(shè)知,,則,故應(yīng)選(C).方法3:排除法.取,易驗(yàn)證符合原題條件,計(jì)算可知(A)、(B)、(D)三個(gè)選項(xiàng)均不正確,故應(yīng)選(C).方法4:由題設(shè)可知是一個(gè)二階可導(dǎo)的偶函數(shù),則為奇函數(shù),為偶函數(shù),又在內(nèi),則在內(nèi),故應(yīng)選(C).(3)【答案】(C)【分析】這一類題目最好把觀察法與技巧相結(jié)合.【解析】對(duì)于(A),,即存在一組不全為零的數(shù)1,-1,1,使得等式為零,根據(jù)線性相關(guān)的定義可知線性相關(guān),排除(A);對(duì)于(B),,即存在一組不全為零的數(shù)1,1,-1,使得等式為零,根據(jù)線性相關(guān)的定義可知線性相關(guān),排除(B);對(duì)于(C),簡(jiǎn)單的加加減減得不到零,就不應(yīng)繼續(xù)觀察下去,而應(yīng)立即轉(zhuǎn)為計(jì)算行列式.設(shè)有數(shù)使得,整理得已知,,線性無關(guān),上式成立,當(dāng)且僅當(dāng)=1\*GB3①因=1\*GB3①的系數(shù)行列式,故=1\*GB3①有唯一零解,即.故原向量組,,線性無關(guān).應(yīng)選(C).或者也可以將,,用線性表出,且寫成矩陣形式,有,,則可逆,故兩向量組是等價(jià)向量組,由,,線性無關(guān)知,,線性無關(guān).(4)【答案】(A)【解析】因是矩陣,若,增廣矩陣也只有行,則故有故有解.應(yīng)選(A);或,由知的行向量組線性無關(guān),那么其延伸組必線性無關(guān),故增廣矩陣的個(gè)行向量也是線性無關(guān)的,亦即;關(guān)于(B)(D)不正確的原因是:由不能推出(注意:是矩陣,可能大于),無解.故(B)(D)不成立.至于(C),當(dāng)時(shí),還可能無解,及無窮多解,(只有當(dāng)時(shí),才有唯一解),故(C)不成立.(5)【答案】(D)【解析】首先看A選項(xiàng):由于,如果成立,則有.若,則等式成立.若,即有,而,與為任意常數(shù)矛盾.故A錯(cuò).再看B選項(xiàng):,而,若成立,則.若,與為任意常數(shù)矛盾.若,則,與矛盾(因?yàn)闉槿我獬?shù)),故B錯(cuò).再來看C選項(xiàng):由于要比較,所以直接的想法是在左邊構(gòu)造出右邊項(xiàng)來.在數(shù)學(xué)計(jì)算中經(jīng)常用到的加一項(xiàng)減一項(xiàng)的技巧.,由所以,故(D)正確,(C)錯(cuò).【相關(guān)知識(shí)點(diǎn)】1.隨機(jī)變量數(shù)學(xué)期望的性質(zhì):若隨機(jī)變量的期望存在,則(其中為常數(shù)),(其中為常數(shù)).三、(本題滿分6分.)【分析】注意本題中有一項(xiàng),當(dāng)時(shí),此項(xiàng)極限存在且為0,所以此項(xiàng)應(yīng)單獨(dú)提出來,剩余兩項(xiàng)為型未定式,應(yīng)先通分然后用洛必達(dá)法則.【解析】原式四、(本題滿分6分.)【解析】由題設(shè)有.(*)在中,將視為的函數(shù),兩邊對(duì)求導(dǎo),得.(1)在中,將視為的函數(shù),兩邊對(duì)求導(dǎo),得.(2)將(1)、(2)兩式代入()式,得.【相關(guān)知識(shí)點(diǎn)】1.多元復(fù)合函數(shù)求導(dǎo)法則:若和在點(diǎn)處偏導(dǎo)數(shù)存在,函數(shù)在對(duì)應(yīng)點(diǎn)具有連續(xù)偏導(dǎo)數(shù),則復(fù)合函數(shù)在點(diǎn)處的偏導(dǎo)數(shù)存在,且.五、(本題滿分6分)【解析】以表示銷售利潤(rùn)額,則,令,得.由于,可見,時(shí),有極大值,也是最大值(因?yàn)槭俏┮获v點(diǎn)).最大利潤(rùn)額(元).六、(本題滿分7分)123xO【解析】如右圖所示,所求面積,表示該平面圖形在軸下方的部分,表示該平面圖形在軸上方的部分.易見,123xO,.故所求圖形的面積.平面圖形繞軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體體積;平面圖形繞軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體體積.故所求旋轉(zhuǎn)體體積.七、(本題滿分7分)【分析】證明是偶函數(shù)要用定義;證明單調(diào)不減,只需證明.【解析】(1)因?yàn)閯t為偶函數(shù).(2)由可知(其中介于0與之間)若,則,從而,于是;若,則,從而,于是,即對(duì)一切的,有.原題得證.八、(本題滿分6分)【解析】直線,和的方程相應(yīng)為,和.O1xPy21AB過點(diǎn)向軸做垂線,它將分成和兩個(gè)區(qū)域(如右圖所示),其中點(diǎn)O1xPy21AB;.故.九、(本題滿分7分)【解析】(1)由及,有(2)用行列式拉普拉斯展開式及行列式乘法公式,有,又因是非奇異矩陣,所以,故.由此可知可逆的充要條件是,即,亦即.評(píng)注:本題考查分塊矩陣的運(yùn)算,要看清是1階矩陣,是一個(gè)數(shù).【相關(guān)知識(shí)點(diǎn)】1.兩種特殊的拉普拉斯展開式:設(shè)是階矩陣,是階矩陣,則.2.行列式乘積公式:設(shè)是兩個(gè)階矩陣,則乘積的行列式等于和的行列式的乘積,即.十、(本題滿分9分)【分析】是對(duì)角矩陣,那么與相似時(shí)的矩陣就是由的線性無關(guān)的特征向量所構(gòu)成的,求矩陣也就是求的特征向量.【解析】(1)因?yàn)?則,,即(2)由題設(shè)條件,由相似矩陣的性質(zhì),有特征值.當(dāng),由,得到基礎(chǔ)解系為,即為矩陣的屬于特征值的線性無關(guān)的特征向量;當(dāng),由,其基礎(chǔ)解系為,即為矩陣的屬于特征值的特征向量.那么,令則有.【相關(guān)知識(shí)點(diǎn)】1.相似矩陣的性質(zhì):相似矩陣的特征值相同.十一、(本題滿分8分)【解析】(1)求分布函數(shù)實(shí)質(zhì)上是求的概率.由的絕對(duì)值不大于1,可得當(dāng)時(shí),;當(dāng)時(shí),;又,則;由題意在內(nèi)的任一子區(qū)間上取值的條件概率與該子區(qū)間長(zhǎng)度成正比,那么當(dāng)?shù)闹祵儆诘臈l件下,事件的條件概率為:(其中為比例正常數(shù)),又,而,所以,故;當(dāng)時(shí),,所以.由條件概率公式,有,而,所以,故.(2)取負(fù)值的概率而,又隨機(jī)變量的密度函數(shù)在內(nèi)是連續(xù)的,所以在內(nèi)隨機(jī)變量在一點(diǎn)處的概率為0,即,所以.【相關(guān)知識(shí)點(diǎn)】1.條件概率公式:.十二、(本題滿分8分)【解析】(1)要求的聯(lián)合概率分布,其中都是與相關(guān),所以通過求的概率來求的概率.因服從參數(shù)為的指數(shù)分布,則其分布函數(shù)為:由,知只有四種可能取值.因事件相
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 污水處理廠維護(hù)合同(2篇)
- 二零二五年度金融機(jī)構(gòu)風(fēng)險(xiǎn)防控合同范本
- 二零二五年度電影演員角色定制聘請(qǐng)合同4篇
- 二零二五年度旅行社旅游文化展覽承包合作協(xié)議3篇
- 二零二五年度外匯貸款業(yè)務(wù)擔(dān)保合同
- 二零二五年度文化產(chǎn)業(yè)投資基金合同擔(dān)保與風(fēng)險(xiǎn)防范3篇
- 汽、柴油深度加氫催化劑項(xiàng)目融資渠道探索
- 二零二五年度葡萄酒年份酒年份酒鑒定技術(shù)合作合同4篇
- 2025年度綠色生態(tài)葡萄園承包經(jīng)營(yíng)權(quán)轉(zhuǎn)讓合同書
- 二零二五年度2025年二手房買賣按揭合同范本專業(yè)檢索
- 2025年度院感管理工作計(jì)劃(后附表格版)
- 勵(lì)志課件-如何做好本職工作
- 化肥銷售工作計(jì)劃
- 2024浙江華數(shù)廣電網(wǎng)絡(luò)股份限公司招聘精英18人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2024年山東省濟(jì)南市中考英語試題卷(含答案解析)
- 2024年社區(qū)警務(wù)規(guī)范考試題庫(kù)
- 2025中考英語作文預(yù)測(cè):19個(gè)熱點(diǎn)話題及范文
- 第10講 牛頓運(yùn)動(dòng)定律的綜合應(yīng)用(一)(講義)(解析版)-2025年高考物理一輪復(fù)習(xí)講練測(cè)(新教材新高考)
- 靜脈治療護(hù)理技術(shù)操作標(biāo)準(zhǔn)(2023版)解讀 2
- 2024年全國(guó)各地中考試題分類匯編(一):現(xiàn)代文閱讀含答案
- GB/T 30306-2024家用和類似用途飲用水處理濾芯
評(píng)論
0/150
提交評(píng)論