




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆天津市靜海區(qū)數(shù)學(xué)高三上期末達(dá)標(biāo)檢測模擬試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一個封閉的棱長為2的正方體容器,當(dāng)水平放置時,如圖,水面的高度正好為棱長的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),則容器里水面的最大高度為()A. B. C. D.2.若集合,,則()A. B. C. D.3.已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關(guān)于對稱,則的值為()A.2 B.3 C.4 D.4.中,角的對邊分別為,若,,,則的面積為()A. B. C. D.5.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.26.已知函數(shù)的最大值為,若存在實(shí)數(shù),使得對任意實(shí)數(shù)總有成立,則的最小值為()A. B. C. D.7.已知a>b>0,c>1,則下列各式成立的是()A.sina>sinb B.ca>cb C.a(chǎn)c<bc D.8.要得到函數(shù)的圖象,只需將函數(shù)的圖象上所有點(diǎn)的()A.橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),再向左平移個單位長度B.橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),再向右平移個單位長度C.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向左平移個單位長度D.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向右平移個單位長度9.在中,角、、的對邊分別為、、,若,,,則()A. B. C. D.10.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()11.定義在上的奇函數(shù)滿足,若,,則()A. B.0 C.1 D.212.函數(shù)(其中是自然對數(shù)的底數(shù))的大致圖像為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在點(diǎn)處的切線經(jīng)過原點(diǎn),函數(shù)的最小值為,則________.14.如圖,在等腰三角形中,已知,,分別是邊上的點(diǎn),且,其中且,若線段的中點(diǎn)分別為,則的最小值是_____.15.在中,已知,則的最小值是________.16.已知隨機(jī)變量服從正態(tài)分布,若,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線與曲線交于兩點(diǎn).(1)求的長;(2)在以為極點(diǎn),軸的正半軸為極軸建立的極坐標(biāo)系中,設(shè)點(diǎn)的極坐標(biāo)為,求點(diǎn)到線段中點(diǎn)的距離.18.(12分)已知函數(shù).(1)當(dāng)時,求的單調(diào)區(qū)間;(2)若函數(shù)有兩個極值點(diǎn),,且,為的導(dǎo)函數(shù),設(shè),求的取值范圍,并求取到最小值時所對應(yīng)的的值.19.(12分)設(shè)函數(shù),().(1)若曲線在點(diǎn)處的切線方程為,求實(shí)數(shù)a、m的值;(2)若對任意恒成立,求實(shí)數(shù)a的取值范圍;(3)關(guān)于x的方程能否有三個不同的實(shí)根?證明你的結(jié)論.20.(12分)《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績從高到低劃分為、、、、、、、共8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為、、、、、、、.選考科目成績計(jì)入考生總成績時,將至等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到、、、、、、、八個分?jǐn)?shù)區(qū)間,得到考生的等級成績.某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六個選考科目進(jìn)行測試,其中物理考試原始成績基本服從正態(tài)分布.(1)求物理原始成績在區(qū)間的人數(shù);(2)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記表示這3人中等級成績在區(qū)間的人數(shù),求的分布列和數(shù)學(xué)期望.(附:若隨機(jī)變量,則,,)21.(12分)甲、乙、丙三名射擊運(yùn)動員射中目標(biāo)的概率分別為,三人各射擊一次,擊中目標(biāo)的次數(shù)記為.(1)求的分布列及數(shù)學(xué)期望;(2)在概率(=0,1,2,3)中,若的值最大,求實(shí)數(shù)的取值范圍.22.(10分)設(shè)函數(shù)f(x)=|x﹣a|+|x|(a>0).(1)若不等式f(x)﹣|x|≥4x的解集為{x|x≤1},求實(shí)數(shù)a的值;(2)證明:f(x).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)已知可知水面的最大高度為正方體面對角線長的一半,由此得到結(jié)論.【詳解】正方體的面對角線長為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),所以容器里水面的最大高度為面對角線長的一半,即最大水面高度為,故選B.【點(diǎn)睛】本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎(chǔ)題.2、B【解析】
根據(jù)正弦函數(shù)的性質(zhì)可得集合A,由集合性質(zhì)表示形式即可求得,進(jìn)而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點(diǎn)睛】本題考查了集合關(guān)系的判斷與應(yīng)用,集合的包含關(guān)系與補(bǔ)集關(guān)系的應(yīng)用,屬于中檔題.3、B【解析】
因?yàn)閷⒑瘮?shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,可得,結(jié)合已知,即可求得答案.【詳解】將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,又和的圖象都關(guān)于對稱,由,得,,即,又,.故選:B.【點(diǎn)睛】本題主要考查了三角函數(shù)圖象平移和根據(jù)圖象對稱求參數(shù),解題關(guān)鍵是掌握三角函數(shù)圖象平移的解法和正弦函數(shù)圖象的特征,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.4、A【解析】
先求出,由正弦定理求得,然后由面積公式計(jì)算.【詳解】由題意,.由得,.故選:A.【點(diǎn)睛】本題考查求三角形面積,考查正弦定理,同角間的三角函數(shù)關(guān)系,兩角和的正弦公式與誘導(dǎo)公式,解題時要根據(jù)已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解.5、B【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時,有最大值為,即,故..當(dāng),即時等號成立.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.6、B【解析】
根據(jù)三角函數(shù)的兩角和差公式得到,進(jìn)而可以得到函數(shù)的最值,區(qū)間(m,n)長度要大于等于半個周期,最終得到結(jié)果.【詳解】函數(shù)則函數(shù)的最大值為2,存在實(shí)數(shù),使得對任意實(shí)數(shù)總有成立,則區(qū)間(m,n)長度要大于等于半個周期,即故答案為:B.【點(diǎn)睛】這個題目考查了三角函數(shù)的兩角和差的正余弦公式的應(yīng)用,以及三角函數(shù)的圖像的性質(zhì)的應(yīng)用,題目比較綜合.7、B【解析】
根據(jù)函數(shù)單調(diào)性逐項(xiàng)判斷即可【詳解】對A,由正弦函數(shù)的單調(diào)性知sina與sinb大小不確定,故錯誤;對B,因?yàn)閥=cx為增函數(shù),且a>b,所以ca>cb,正確對C,因?yàn)閥=xc為增函數(shù),故,錯誤;對D,因?yàn)樵跒闇p函數(shù),故,錯誤故選B.【點(diǎn)睛】本題考查了不等式的基本性質(zhì)以及指數(shù)函數(shù)的單調(diào)性,屬基礎(chǔ)題.8、C【解析】
根據(jù)三角函數(shù)圖像的變換與參數(shù)之間的關(guān)系,即可容易求得.【詳解】為得到,將橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),故可得;再將向左平移個單位長度,故可得.故選:C.【點(diǎn)睛】本題考查三角函數(shù)圖像的平移,涉及誘導(dǎo)公式的使用,屬基礎(chǔ)題.9、B【解析】
利用兩角差的正弦公式和邊角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【詳解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故選:B.【點(diǎn)睛】本題考查三角形中角的正弦值的計(jì)算,考查兩角差的正弦公式、邊角互化思想、余弦定理與正弦定理的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.10、D【解析】
由題意利用兩個向量坐標(biāo)形式的運(yùn)算法則,兩個向量平行、垂直的性質(zhì),得出結(jié)論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標(biāo)對應(yīng)不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標(biāo)對應(yīng)不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點(diǎn)睛】本題主要考查兩個向量坐標(biāo)形式的運(yùn)算,兩個向量平行、垂直的性質(zhì),屬于基礎(chǔ)題.11、C【解析】
首先判斷出是周期為的周期函數(shù),由此求得所求表達(dá)式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點(diǎn)睛】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎(chǔ)題.12、D【解析】由題意得,函數(shù)點(diǎn)定義域?yàn)榍?,所以定義域關(guān)于原點(diǎn)對稱,且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對稱,故選D.二、填空題:本題共4小題,每小題5分,共20分。13、0【解析】
求出,求出切線點(diǎn)斜式方程,原點(diǎn)坐標(biāo)代入,求出的值,求,求出單調(diào)區(qū)間,進(jìn)而求出極小值最小值,即可求解.【詳解】,,,切線的方程:,又過原點(diǎn),所以,,,.當(dāng)時,;當(dāng)時,.故函數(shù)的最小值,所以.故答案為:0.【點(diǎn)睛】本題考查導(dǎo)數(shù)的應(yīng)用,涉及到導(dǎo)數(shù)的幾何意義、極值最值,屬于中檔題..14、【解析】
根據(jù)條件及向量數(shù)量積運(yùn)算求得,連接,由三角形中線的性質(zhì)表示出.根據(jù)向量的線性運(yùn)算及數(shù)量積公式表示出,結(jié)合二次函數(shù)性質(zhì)即可求得最小值.【詳解】根據(jù)題意,連接,如下圖所示:在等腰三角形中,已知,則由向量數(shù)量積運(yùn)算可知線段的中點(diǎn)分別為則由向量減法的線性運(yùn)算可得所以因?yàn)?代入化簡可得因?yàn)樗援?dāng)時,取得最小值因而故答案為:【點(diǎn)睛】本題考查了平面向量數(shù)量積的綜合應(yīng)用,向量的線性運(yùn)算及模的求法,二次函數(shù)最值的應(yīng)用,屬于中檔題.15、【解析】分析:可先用向量的數(shù)量積公式將原式變形為:,然后再結(jié)合余弦定理整理為,再由cosC的余弦定理得到a,b的關(guān)系式,最后利用基本不等式求解即可.詳解:已知,可得,將角A,B,C的余弦定理代入得,由,當(dāng)a=b時取到等號,故cosC的最小值為.點(diǎn)睛:考查向量的數(shù)量積、余弦定理、基本不等式的綜合運(yùn)用,能正確轉(zhuǎn)化是解題關(guān)鍵.屬于中檔題.16、0.4【解析】
因?yàn)殡S機(jī)變量ζ服從正態(tài)分布,利用正態(tài)曲線的對稱性,即得解.【詳解】因?yàn)殡S機(jī)變量ζ服從正態(tài)分布所以正態(tài)曲線關(guān)于對稱,所.【點(diǎn)睛】本題考查了正態(tài)分布曲線的對稱性在求概率中的應(yīng)用,考查了學(xué)生概念理解,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)將直線的參數(shù)方程化為直角坐標(biāo)方程,由點(diǎn)到直線距離公式可求得圓心到直線距離,結(jié)合垂徑定理即可求得的長;(2)將的極坐標(biāo)化為直角坐標(biāo),將直線方程與圓的方程聯(lián)立,求得直線與圓的兩個交點(diǎn)坐標(biāo),由中點(diǎn)坐標(biāo)公式求得的坐標(biāo),再根據(jù)兩點(diǎn)間距離公式即可求得.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),化為直角坐標(biāo)方程為,即直線與曲線交于兩點(diǎn).則圓心坐標(biāo)為,半徑為1,則由點(diǎn)到直線距離公式可知,所以.(2)點(diǎn)的極坐標(biāo)為,化為直角坐標(biāo)可得,直線的方程與曲線的方程聯(lián)立,化簡可得,解得,所以兩點(diǎn)坐標(biāo)為,所以,由兩點(diǎn)間距離公式可得.【點(diǎn)睛】本題考查了參數(shù)方程與普通方程轉(zhuǎn)化,極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化,點(diǎn)到直線距離公式應(yīng)用,兩點(diǎn)間距離公式的應(yīng)用,直線與圓交點(diǎn)坐標(biāo)求法,屬于基礎(chǔ)題.18、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)的取值范圍是;對應(yīng)的的值為.【解析】
(1)當(dāng)時,求的導(dǎo)數(shù)可得函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個極值點(diǎn),,且,利用導(dǎo)函數(shù),可得的范圍,再表達(dá),構(gòu)造新函數(shù)可求的取值范圍,從而可求取到最小值時所對應(yīng)的的值.【詳解】(1)函數(shù)由條件得函數(shù)的定義域:,當(dāng)時,,所以:,時,,當(dāng)時,,當(dāng),時,,則函數(shù)的單調(diào)增區(qū)間為:,單調(diào)遞減區(qū)間為:,;(2)由條件得:,,由條件得有兩根:,,滿足,△,可得:或;由,可得:.,函數(shù)的對稱軸為,,所以:,;,可得:,,,則:,所以:;所以:,令,,,則,因?yàn)椋簳r,,所以:在,上是單調(diào)遞減,在,上單調(diào)遞增,因?yàn)椋?,?),,(1),所以,;即的取值范圍是:,;,所以有,則,;所以當(dāng)取到最小值時所對應(yīng)的的值為;【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值和單調(diào)區(qū)間問題,考查利用導(dǎo)數(shù)求函數(shù)的最值,體現(xiàn)了轉(zhuǎn)化的思想方法,屬于難題.19、(1),;(2);(3)不能,證明見解析【解析】
(1)求出,結(jié)合導(dǎo)數(shù)的幾何意義即可求解;(2)構(gòu)造,則原題等價于對任意恒成立,即時,,利用導(dǎo)數(shù)求最值即可,值得注意的是,可以通過代特殊值,由求出的范圍,再研究該范圍下單調(diào)性;(3)構(gòu)造并進(jìn)行求導(dǎo),研究單調(diào)性,結(jié)合函數(shù)零點(diǎn)存在性定理證明即可.【詳解】(1),,曲線在點(diǎn)處的切線方程為,,解得.(2)記,整理得,由題知,對任意恒成立,對任意恒成立,即時,,,解得,當(dāng)時,對任意,,,,,即在單調(diào)遞增,此時,實(shí)數(shù)的取值范圍為.(3)關(guān)于的方程不可能有三個不同的實(shí)根,以下給出證明:記,,則關(guān)于的方程有三個不同的實(shí)根,等價于函數(shù)有三個零點(diǎn),,當(dāng)時,,記,則,在單調(diào)遞增,,即,,在單調(diào)遞增,至多有一個零點(diǎn);當(dāng)時,記,則,在單調(diào)遞增,即在單調(diào)遞增,至多有一個零點(diǎn),則至多有兩個單調(diào)區(qū)間,至多有兩個零點(diǎn).因此,不可能有三個零點(diǎn).關(guān)于的方程不可能有三個不同的實(shí)根.【點(diǎn)睛】本題考查了導(dǎo)數(shù)幾何意義的應(yīng)用、利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)的零點(diǎn)存在性定理,考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想,屬于難題.20、(Ⅰ)1636人;(Ⅱ)見解析.【解析】
(Ⅰ)根據(jù)正態(tài)曲線的對稱性,可將區(qū)間分為和兩種情況,然后根據(jù)特殊區(qū)間上的概率求出成績在區(qū)間內(nèi)的概率,進(jìn)而可求出相應(yīng)的人數(shù);(Ⅱ)由題意得成績在區(qū)間[61,80]的概率為,且,由此可得的分布列和數(shù)學(xué)期望.【詳解】(Ⅰ)因?yàn)槲锢碓汲煽儯裕晕锢碓汲煽冊冢?7,86)的人數(shù)為(人).(Ⅱ)由題意得,隨機(jī)抽取1人,其成績在區(qū)間[61,80]內(nèi)的概率為.所以隨機(jī)抽取三人,則的所有可能取值為0,1,2,3,且,所以,,,.所以的分布列為0123所以數(shù)學(xué)期望.【點(diǎn)睛】(1)解答第一問的關(guān)鍵是利用正態(tài)分布的三個特殊區(qū)間表示所求概率的區(qū)間,再根據(jù)特殊區(qū)間上的概率求解,解題時注意結(jié)合正態(tài)曲線的對稱性.(2)解答第二問的關(guān)鍵是判斷出隨機(jī)變量服從二項(xiàng)分布,然后可得分布列及其數(shù)學(xué)期望.當(dāng)被抽取的總體的容量較大時,抽樣可認(rèn)為是等可能的,進(jìn)而可得隨機(jī)變量服從二項(xiàng)分布.21、(1),ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐飲合作合同
- 工程裝修合同補(bǔ)充協(xié)議
- 合同和協(xié)議合同協(xié)議書
- 濟(jì)南護(hù)理職業(yè)學(xué)院《植物學(xué)實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼寧城市建設(shè)職業(yè)技術(shù)學(xué)院《服裝色彩學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 天津師范大學(xué)津沽學(xué)院《光電子電路設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 重慶安全技術(shù)職業(yè)學(xué)院《生活適應(yīng)的設(shè)計(jì)與教學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海健康醫(yī)學(xué)院《中小學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)與教材研究》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼源職業(yè)技術(shù)學(xué)院《基礎(chǔ)寫作(一)》2023-2024學(xué)年第二學(xué)期期末試卷
- 黃河交通學(xué)院《自動化專業(yè)技能訓(xùn)練》2023-2024學(xué)年第二學(xué)期期末試卷
- 2022輸變電工程建設(shè)安全管理規(guī)定
- 備課專業(yè)化讀書分享課件
- 《爆破作業(yè)單位許可證》申請表
- 人教版二年級數(shù)學(xué)下冊教材分析
- 市政道路雨、污水管道工程施工技術(shù)課件
- 全冊(教學(xué)設(shè)計(jì))-蘇教版勞動六年級下冊
- 【淺談小學(xué)英語教學(xué)中的德育滲透3800字(論文)】
- 尺寸鏈的計(jì)算表格
- 夏玉米套種辣椒技術(shù)
- 2023年江蘇省南京市市場監(jiān)督管理局所屬事業(yè)單位招聘5人(共500題含答案解析)筆試歷年難、易錯考點(diǎn)試題含答案附詳解
- DB6101T 197-2022 藤蔓類尾菜堆肥技術(shù)規(guī)程
評論
0/150
提交評論