版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
外文資料翻譯中英文對照外文翻譯文獻(文檔含英文原文和中文翻譯)LowPowerMagneticBearingDesignForHighSpeedRotatingMachineryP.E.Allaire,E.H.Maslen,andR.R.Humphris,DepartmentofMechanicalandAerospaceEngineeringUniversityofVirginiaCharlottesville,VA22901C.K.SortoreAuraSystems,Inc.EISegundo,CA90245P.A.StuderMagneticConceptsSilverSprings,MD20901317SUMMARYAgneticsuspensiontechnologyhasadvancedtothepointofbeingabletoofferanumberofadvantagestoavarietyofapplicationsintherotatingmachineryandaerospacefields.Onestrongadvantageofmagneticbearingsoverconventionalbearingsisthedecreaseinpowerconsumption.Theuseofpermanentmagnets,alongwithelectromagnets,isoneappealingoptionwhichcanfurtherreducethepowerconsumptionofthebearing.Thedesignandconstructionofasetofpermanentmagnetbiased,activelycontrolledmagneticbearingsforaflexiblerotorispresented.Bothpermanentmagnetsandelectromagnetsareusedinaconfigurationwhicheffectivelyprovidesthenecessaryfluxesintheappropriateairgaps,whilesimultaneouslykeepingtheundesirabledestabilizingforcestoaminimum.Thedesignincludestworadialbearingsandathrustbearing.Thetheoreticaldevelopmentbehindthedesignisbrieflydiscussed.Experimentalperformanceresultsforasetofoperatingprototypebearingsispresented.Theresultsincludemeasurementsofloadcapacity,bearingstiffnessanddampingandthedynamicresponseoftherotor.Withfewexceptions,theexperimentalmeasurementsmatchedverywellwiththepredictedperformance.Thepowerconsumptionofthesebearingswasfoundtobesignificantlyreducedfromthatforacomparablesetofallelectromagneticbearing.INTRODUCTIONMagneticbearingshaveanumberofstrongadvantages.Onemostobviousadvantageistheirnon~ontacting,virtuallyfriction-freecharacteristics.Entirelubricationsystemsandtheneedformechanicaloilseals,whichaddtofrictionlossesandinstabilitiesassociatedwithcrosscoupledbearingcoefficients,canbeeliminatedbyusingthesetypesofbearings.Thelifeexpectancyofamagneticbearing,inmanycases,canbemuchhigherthanthatofconventionalbearing.Duetothenon~ontactingnatureofthebearings,mechanicalpartsdonotwearout.Thiscanobviouslyincreasesystemreliabilityanddecreasecostlyrepairsandnecessarymaintenancewhichinterruptprofitablemachineoperation.Ifdesignedproperly,amagneticbearingcanperformundermuchharsherconditionsandenvironmentsforextendedperiodsoftimewhichwouldnotbepossiblewithothertypesofbearings.Onefurtheradvantageofthefrictionlesscharacteristicofthesebearingsisthatofpowerloss.Thepowerconsumptionofaconventionalfluid-filmbearingisinmanycasesmuchmorethanforamagneticbearing.Powerlossreductionsofoneorderofmagnitudeormorecanbeexpectedwhenamachineisconvertedfromusingconventionalbearingstomagneticbearings.Avarietyofworkhasbeenaccomplishedonanumberofdifferentapplicationsandaspectsofmagneticbearings.Anextensiveamountofresearchhasbeenperformedbyanumberofuniversityandindustryresearchersonthedevelopmentofmagneticbearingsinan·industrialcannedmotorpump[1].AnumberofothersuccessfulindustrialapplicationsofmagneticbearingshasbeenreportedbyWeise[21.Burrowset.al.[3]presentsthedevelopmentandapplicationofamagneticbearingspecificallydesignedforthevibrationcontrolofaflexiblerotor.Keith,et.al.[4]successfullydevelopedaPC-baseddigitalcontrollerformagneticbearings.Continuingresearchisbeingperformedintheareasofdigitalandadaptivecontrolsformagneticbearings.Inresearchingtheuseofpermanentmagnetsincombinationwithelectromagnets,ofparticularinterestaretwopatentscreditedtoPhilipStuder[5,6].Thesepatentscontainanumberoffeatures,primarilydealingwithpermanentmagnets,whichhaveusefulapplicationtothebearingsdiscussedinthispaper.WilsonandStu~er[7]havealsoappliedthepermanentmagnetbiasconcepttoalinearmotionbearing.Ohkamiet.al.[8]haveperformedsomeinterestingcomparisonstudiesofmagneticbearingsofvariousconfigurationswhichusepermanentmagnets.AnotherpaperbyTsuchiyaet.al.[9]studiesandcommentsonthestabilityofahighspeedrotorwhichissuspendedinmagneticbearingsbiasedwithpermanentmagnets.Meeks[10]hasalsoperformedacomparisonofthevariousmagneticbearingdesignapproachesandconcludesthatthecombiningofactivelycontrolledelectromagnetswithpermanentmagnetsresultsinasuperiormagneticbearingintermsofsize,weightandpowerconsumption.Therareearthpermanentmagnetsoftoday,inparticularSm-CoandNd-Fe-Bomagnets,offerveryhighperformancecharacteristicsintermsofmagneticstrength,energyproductandthermalqualities.Themagnetdesignerisabletoconcentrateaverylargeamountofmagneticenergyinasmallpackage,makingmoreefficientuseofavailablespace.ThedesignconceptforthepermanentmagnetbiasedmagneticbearingdesigndiscussedinthispaperisavariationonresearchanddevelopmentreportedbyStuder[5,6].Thefollowingtwosectionsgiveabriefdescriptionofhowthebearingsconceptuallyoperate.RadialMagnetiCBearingDescriptionAdiagramofapermanentmagnetbiasedradialmagneticbearingisshowninFigure1.Thisbearingisdesignedtooperateatoneendoftherotorandcontrolradialforcesonly.Fouraxiallymagnetizedarcsegmentmagnetsarepositionedcircumferentiallyadjacenttothestator.Thebiasfluxgeneratedbythepermanentmagnetspassesdownthelaminatedstatorpoleleg,throughtheworkingairgap,axiallyalongtheshaft,thenreturnstothepermanentmagnetvia.aradialbiaspolepiece.Theactivecontrolfluxgeneratedbythecoilsalsopassesdownthestatorpolelegandthroughtheworkingairgap.Thereturnpathfortheactivefluxisthencircumferentiallyaroundthestator,asshowninFigure1.Thisdesignrequiresonlyfourpolesandfourcoils,unlikeanallelectromagneticdesignwhichgenerallyrequireseight.Inaddition,sincethecoilsforeachbearingaxisareconnectedinseries,thebearingcontrolsystemrequiresonlyfivecurrentamplifierchannels,whichishalfasmanyasrequiredoftheallelectromagneticbearing.CombinationRadial/ThrustMagneticBearingDescriptionAschematicofthisbearingdesign,revealingthevariousmagneticpaths,isshowninFigure2.Thisbearingcombinescontrolofbothradialandthrustforces.Theradialportionofthebearingisidenticaltothatwhichwasdescribedintheprevioussection.Thethrustcontrolhowever,isimplementedbyauniquemagneticfluxconfiguration.Thepermanentmagnetbiasfluxpassingalongtheshaftsplitsequallybetweenthetwothrustpolesbeforereturningtothepermanentmagnet.Asingleactivecoilproducesamagneticflux,intheshapeofatoroid,whichsymmetricallyaddsorsubtractstothebiasfluxintheworkingairgapsbetweenthethrustdiskandthrustpoles.DesignConceptThebearingsdesignedforthisprojectaredifferentfromallelectromagneticbearingdesignsinthattheyemploybothpermanentmagnetsandelectromagnets.Permanentmagnetsgeneratethebiasfluxintheworkingairgapsandelectromagnetsareusedtomodulatethisflux.Thepurposeofestablishingabiasfluxintheworkingairgapsistolinearizethegoverningforceequationofthemagneticactuator.Thebiasfluxisanominalfluxdensityaboutwhichthecontrolfluxisvaried.Ifabiasfluxofzeroisused,(onlyoneopposingactuatorisoperatedatatime,)thentheforcegeneratedbytheactuatorontherotorfollowsaquadraticforcelaw,i.e.,theforcewillbeproportionaltothesquareofthefluxdensityintheairgaps.Consequently,theforceslewratewillbezerowhentherotorisinthenominalbalancedpositionandthetransientresponsewillbeadverselyeffected.If,however,thebearingfluxesaremodulatedaboutanon-zerobiasflux,(withopposingactuatorssymmetricallyperturbed,)itiseasilyshownthattheforcebecomeslinearlyrelatedtothecontrolflux.Thefollowingsectiondemonstratesthisimportantrelation.ForceRelationshipsTheforcegeneratedinanairgapofareaAgandlengthgbyamagneticactuatorcanbeexpressedbythedirectrelationwhereBgisthefluxdensityintheairgapandJ.Loisthepermeabilityoffreespace.Ifonlyasingleaxisofthebearingisconsidered,thenthenetforceactingontheshaftwillbethedifferenceofthetwooppositeactingactuatorforces.Assumingtheareasofthetwoopposingairgapsarethesame,theforceactingontheshaftbythemagneticbearingcanbeexpressedasThefluxdensityintheairgapsisbeingsuppliedbytwosources,i.e.,thepermanentmagnetandthecoil.Inordertoproperlyprovidedifferentialcontrol,thefluxesinthetwogapsaresymmetricallyperturbedsothatthefluxinonegapisincreasedwhilethefluxintheoppositegapisdecreasedbythesameamount.ThisimpliesthatwhereBpmisthefluxdensitygeneratedby'thepermanentmagnetandBeisthefluxdensitygeneratedbythecoil.SubstitutingEqs.l3,4)intoEq.(2),expandingandsimplifying,theforceactingontheshaftcannowbeexpressedasByexpressingtheequationfortheforceontheshaftinthisform,itisinterestingtonotethattheforceisnotonlyproportionaltothebiaslevel,Bpm,butitisalsolinearizedwithrespecttothecontrolflux,Be..OpenLoopStiffnessandActuatorGainTheforcegeneratedbythebearinginthehorizontaldirection,Fx,canbeaccuratelyapproximatedbythetruncatedTaylorseriesexpansioninthefollowingway:Iftnemagneticcircuitisbalanced,thenthefirstterminEq.(6)isequaltozeroandwherexrepresentstherotordisplacementandierepresentsthecontrolcurrentintheelectromagneticcoil.TheparametersKxandKiaredefinedashequantityKxisreferredtoastheopenloopstiffnessandrepresentsthechangeinthehorizontalforceduetohorizontaldisplacement.Theopenloopstiffnessisalwaysnegativewhichimpliesthatthebearingisunstableintheopenloopcontrolconfiguration.Unlikeaactualspringwithapositivestiffness,apositivedispacementoftherotortowardthemagnetwillincreasetheattractiveforce.ThequantityKirepresentstheactuatorgainofthebearing.Itrepresentschangesinthehorizontalforceduetocontrolcurrent,ie.Equivalentexpressionsexistforthecomponentsoftheverticalforceexpression.Expressionsfortheopenloopstiffnessandtheactuatorgainaredeterminedbyperformingtheappropriatedifferentiationoftheforceexpression.TheseexpressionstakeontheformwhereLandHrepresentthelengthanddemagnetizationforce,respectively,ofthepermanentmagnetandNisthenumberofturnsintheelectromagneticcoil.ControlSystemDescriptionThecontrolelementsofthissystemarethosecomponentswhichdetectthemotionoftheshaft,determinetherequiredcontrolforceandgenerateacoilcurrentrequiredbythemagneticbearingtogeneratethisforce.Themagneticbearingsystemconsistsoffourdistinctcomponents:themagneticactuator,thedisplacementsensorsandassociatedconditioningcircuits,theanalogPIDcontrollerandthepoweramplifier.Theactualmagneticbearingmainlyconsistsoftheelectromagneticcoils,ironpolepieces,rotorandpermanentmagnets.Thesignalconditioningcomponentconsistsoftheeddycurrentinductiondisplacementsensors,signalamplificationandcoordinatetransformationcircuits.Theanalogcontrollerprimarilyconsistsofthreeseparatecomponents.Thecomponentstaketheformofproportional(P),integral(I)andderivative(D)compensationnetworks.Thesethreeparallelstagesareaddedtogetherthroughasummingamplifiertoproducetheoutputoftheanalogcontroller.Thelastcomponentinthecontrolloopisthepoweramplifier.Theamplifier,uponrequestofthecontroller,suppliestherequiredcurrenttomagneticcoilstoproducethenecessaryfluxesinthebearing.Thedynamicsofthebearing-rotorsystemcanbecombinedwiththeoperatingcharacteristicsofthecontrolelectronicstoformaclosed-loopcontrolsystem.ThiscontrolsystemisshowninasimplifiedblockdiagramforminFigure3.Thedisplacementsensorcharacteristics,analogcontrollerandamplifiermakeuptherelativelycomplextransferfunctionofthefeedbackcontroller,Gc(s).Thefeedbackcontrollerrelatestherotorpositiontotheactuatorcurrent.Theclosed-looptransferfunctionforthismagneticbearingsystem,asdeterminedfromthisblockdiagram,isgivenbywheremisthemassoftherotorsupportedbythebearing.PrototypeBearingConstructionThefour-poleradialbearingstators,asshowninthediagramsofFigures1and2,weredesignedtobeidenticalforbothbearings.Thestatorsandrotorswereconstructedof3%silicon-ironlaminationmaterialwhichhadathicknessof0.007inches.Eachlaminatedcomponentconsistsofapproximately100laminations.Thelaminationsweregluedtogetherusingatwopartactivator/resinadhesiveandtheshapewasmachinedbywireEDM(electricdischargemachining.)Thebearingstatorshaveanoutsidediameterofapproximately3.0inchesandanaxiallengthofapproximately0.7inches.Theoutsidediameterofthelaminatedrotorisapproximately1.5inches.Thethrustbearingcomponentsweremachinedfromsoftmagnetiron.Thehighenergypermanentmagnets,madeoutofageodymium-Iron-Boronalloy,haveamaximumenergyproductof30MG-Oe.Thebearingssupportashaftweighingapproximately3.7Ibm.LoadCapacityMeasurementsofthemaximumloadappliedtotheshaft,beforefallingoutofsupport,areplottedasafunctionofproportionalcontrollergain,Kp,inFigure4.Theforceinthistestwasappliedbyhangingweightsontheshaft.Apulleysystemwasconstructedinsuchawaythattheforcecouldbeappliedinthedesireddirection.Theforceintheplotsrepresentsforcesappliedalongthebearingaxes.Thevariationofthemaximumloadatlowerproportionalgainsisactuallyameasureofthestabilitythresholdofthesystem.ItisnotedinEq.t8)thattheopenloopstiffness,Kxisdefinedatanominaloperatingpoint,i.e.,rotorpositionandcontrolcurrentequaltozero.However,asthebearingisloadedwithastaticforce,thesteadystatecurrentbeginstoincrease.ItcanbeshownanalyticallythatKxisafunctionoftheoperatingpointofthecontrolcurrent.Thatis,asthecontrolcurrentcurrentincreases,Kxalsoincreases.IncreasingproportionalgainhastheeffectofcompensatingforthisincreaseinKxandconsequentlyincreasingthestabilityofthesystem.Themeasurementsmadeathigherproportionalgainsrepresentamoreaccuratemeasureoftheactualloadcapacityofthebearing.Enoughstabilityisprovidedsothatmagneticsaturationisreachedinthebearingpolestructures.ThemaximumpredictedloadsintheplotsofFigure4arecalculatedatthepointofmagneticsaturation.EquivalentBearingStiffnessandDampingMeasurementsoftheequivalentstiffnessofthebearingsareshowninFigure5.Thissimplemeasurementwasperformedbyapplyingaconstantforce,~F,andnotingthedisplacement,~x,oftheshaft(controllerintegratorsturnedoff.)ThestiffnessthenisgivensimplybyKeq=~F/~x.Alinearregressionwasperformedonthemeasureddata,whichresultedinverygoodcorrelation,ascanbeobservedintheplots.Itisnotedthattheproportionalgainhasadirecteffectonthestiffnessofthebearings,ashasbeenpreviouslydemonstratedbyHumphris,et.al.[11].Relativedampinginthebearingswasinvestigatedfromawhitenoisefrequencyresponseanalysisofthebearingandrotor.Theanalysiswasperformedbyinjectingnoise,composedofallfrequenciesofinterest,intooneaxisoftheturbine-endradialbearing,andperformingaFFT(FastFourierTransform)analysisonthevibrationresponseofthataxis.Thislinearfrequencyresponse,composedof100averages,isshowninFigure6.Thederivativecontrollergain,Krwasvariedthrougharangeofvaluesasnotedintheplot.Asexpected,thederivativegainhadadirecteffectonthedampinginthebearings[11].Thefirstlargespikerepresentsthefirsttwomodesofshaftvibration.Theyareveryclosetogetherinfrequencyandessentiallyindistinguishable.Thefrequencyofthesecondspikeisthethirdmodeofvibrationandthethirdsmallspikeatapproximately60,000cpmisthefourthmode.Itisnotedthatthevariationofthederivativegainstronglyeffectsthefirsttwomodes,hasasmalleffectonthethirdmodeandvirtuallynoinfluenceonthevibrationamplitudeofthefourthmode.CriticalSpeedsandRotorResponseThedampedsynchronouscriticalspeedsoftheflexibleshaftsupportedbythesebearingscanbeapproximatelydeterminedfromthewhitenoisefrequencyresponseplotsofFigure6.Thesevalues,however,representthezerospeednaturalfrequencies,andthegyroscopicstiffeningeffectsofanyattacheddiskswouldnotbeincluded.Sincethenaturalfrequencyisgivenby,wherekistheshaftstiffnessandminthemodalmassoftherotor,itisofcourseexpectedthattheobservedcriticalspeeds,whentheshaftwasspinning,wouldbehigher.PlotsshowingthevibrationmagnitudeandphasefortheshaftspeedsthatwereobtainedisincludedinFigure7.Amplitudeinformationwastakendirectlyfromthemagneticbearingsensorsandakey-phasesensorwasusedtoprovidethephaseinformation.AccordingtothemaximumvibrationamplitudesobservedinFigure7,thefirstvibrationmodeisobservedtooccuratapproximately10,000rpmandthesecondatapproximately13,000rpm.PowerConsumptionFinally,anumberofpowerconsumptionmeasurementsweremade.Measurementsofthepowerweretakenwithawattmeterforanumberofcases.Thismeterisusedwiththeassumptionthatthemeasuredvoltageandcurrentbeingsuppliedtothecontrolelectronicsissinusoidalinnature.Inaddition,itisrealizedthatitrepresentsasomewhatgrossmeasurementasitincludesalltheinefficienciesofthevariouselectroniccomponents.Table1summarizestheresults.Thenon~ssentialelectronicdiagnosticcomponentsofthebearingsystemwereobservedtoconsumeonlyabout7watts.Thesemeasurementsrepresentasignificantimprovementoverthe500wattsofapproximatetotalpowerconsumedbyacomparablecurrentbiasedallelectromagneticbearingdesign.CONCLUSIONSThebrieftheorywhichwaspresentedinthispaperestablishedthebasicelectromagneticandmechanicalrelationshipsnecessarytodevelopasetofpermanentmagnetbiasedmagneticbearings.Thedesigninvolvedbothradialandthrustbearings.Theavailabilityofnewerrare-earthhighenergypermanentmagnetsmadeitpossibletoeffectivelyprovidethenecessarybiasfluxesinthebearing.Thebearingsandrotorweresuccessfullyconstructedandoperated.Anumberoftestsandexperimentswereperformedonthebearing-rotorsystem.Thetestsconsistedofloadcapacity,stiffnessanddampingmeasurements.Theresultsprovedtobeverypositiveinthatthetheoreticalpredictionsandtheobservedperformancematchedreasonablywell,givingcredibilitytothemodelswhichwereusedtoperformtheanalysis.Ofparticularinterestforthisstudywasthemeasuredpowerconsumptionofthebearings.Itclearlydemonstratesthattheuseofpermanentmagnetscanimprovetheoperatingefficiencyofanactivemagneticbearing.Itwassuccessfullyobservedanddemonstratedthatthesebearingshavestrongpotentialforfutureuseasefficient,reliablebearings.However,furtherresearchanddevelopmentisrequiredintheareasofcontrols,magneticmaterialsandactuatordesignbeforeitispossibletoinstallthemintoausefulindustrialapplication.REFERENCES1.AllaireP.;Imlach,J.;McDonald,J.;Humphris,R.;Lewis,D.;Banerjee,B.;Blair,B.;Clayton,J.;Flack,R.:"Design,ConstructionandTestofMagneticBearingsinanIndustrialCannedMotorPump,"PumpUsersSymposium,TexasA&M,Houston,TX,May1989.2.Weise,D.A.:"PresentIndustrialApplicationsofActiveMagneticBearings,"Presentedatthe22ndIntersocietyEnergyConversionEngineeringConference,Philadelphia,Pennsylvania,August1987.3.Burrows,C.R.,Sahinkaya,N.;Traxler,A.;andSchweitzer,G.:"DesignandApplicationofaMagneticBearingforVibrationControlandStabilizationofaFlexibleRotor,"ProceedingsoftheFirstInternationalMagneticBearingsSymposium,ETHZurich,Switzerland,June1988.4.KeithF.J.,Williams,R.D.;Allaire,P.E.;andSchafer,R.M.:"DigitalControlofMagneticBearingsSupportingaMultimassFlexibleRotor,"PresentedattheMagneticSuspensionTechnologyWorkshop,Hampton,Virginia,February1988.5.Studer.P.A.:NASA,MagneticBearing,Patent3865442,PatentApplication100637,February1975.6.Studer,P.A.:NASA,LinearMagneticBearing,Patent4387935,PatentApplication214361,December1980.7.Wilson,M.;andStuder,P.A.:"LinearMagneticBearings,"PresentedattheInternationalWorkshoponRareEarth-CobaltMagnetsandTheirApplications,Roanoake,Virginia,June1981.8.Ohkami,Y.,Okamato,0.;Kida,T.;Murakami,C.;Nakajima,A.;Hagihara,S.;andYabuuchi,K.:"AComparisonStudyofVariousTypesofMagneticBearingsUtilizingPermanentMagnets,"PresentedattheInternationalWorkshoponRareEarth-CobaltPermanentMagnetsandTheirApplications,Roanoake,Virginia,June1981.9.Tsuchiya,K;Inoue,M.;Nakajima,A.;Ohkami,Y.;andMurakami,C.:"OnStabilityofMagneticallySuspendedRotoratHighRotationalSpeed,."PresentedattheAerospaceSciencesMeeting,Reno,Nevada,January1989.10.Meeks,C.:"TrendsinMagneticBearingDesign,"PaperpresentedatNavalSeaSystemsCommandMagneticBearingForum,Washington,D.C.,July1989.高速旋轉(zhuǎn)機械的低功率磁力軸承設(shè)計總結(jié):磁懸液研究具有先進的研發(fā)技術(shù),有一定的優(yōu)勢,廣泛應(yīng)用于旋轉(zhuǎn)機械和航空航天等領(lǐng)域。最突出的優(yōu)勢,磁力軸承比傳統(tǒng)的軸承功耗少。電磁鐵是一個十分具有吸引力的選擇,它可以進一步降低軸承的功耗。一組永久磁鐵偏置,主動控制的磁軸承的柔性轉(zhuǎn)子。永久磁鐵和電磁鐵的配置有效地提供通量在合適的氣隙,同時將不穩(wěn)定力量降到最低。該設(shè)計包括2個徑向軸承和一個推力軸承。對設(shè)計理論和發(fā)展進行了簡要討論。一組操作的原型軸承的實驗性能結(jié)果如下,結(jié)果包括負載能力的測量,軸承剛度和阻尼和轉(zhuǎn)子的動態(tài)響應(yīng)。有幾個情況是例外,實驗測量相匹配的預(yù)測性能非常好,這些軸承的功率消耗顯減少。簡介:磁力軸承有許多優(yōu)點。一個最明顯的優(yōu)勢是無摩擦的特點。整個潤滑系統(tǒng)和機械油封,這增加了摩擦損失和不穩(wěn)定性與交叉耦合軸承系數(shù),可以消除這些類型的軸承的摩擦。一個磁力軸承的壽命,在正常情況下,可以遠高于傳統(tǒng)的軸承。由于好性質(zhì)的軸承,機械零件不磨損。這可以明顯提高系統(tǒng)的可靠性,降低成本的維修,中斷盈利機器操作。如果設(shè)計得當(dāng),磁軸承工作的時間是不可能與其他類型的軸承長時間在嚴(yán)酷的條件和環(huán)境下進行。對于這些軸承的摩擦特性,另一個優(yōu)點是功率損失。傳統(tǒng)的流體膜軸承的功率消耗無時無刻,遠遠超過了磁性軸承。當(dāng)一臺機器使用傳統(tǒng)的軸承到換用磁力軸承的時候,可以從一個數(shù)量級或更高的減少功率損耗。各種各樣的程序完成了一些不同的工作和磁性軸承的運行。許多研究人員和工業(yè)研究人員已經(jīng)進行了大量的實驗研究,工業(yè)屏蔽電機泵的磁軸承的發(fā)展[1],和多磁軸承在工業(yè)廣泛應(yīng)用已被魏澤[2]報道。為撓性轉(zhuǎn)子振動控制系統(tǒng)的開發(fā)與應(yīng)[4],成功研制出一種基于微機的磁力軸承數(shù)字控制器。正在進行的數(shù)字和自適應(yīng)控制的磁軸承的持續(xù)研究,在研究永磁體結(jié)合電磁鐵的使用,兩個專利歸功于菲利普[5,6]。這些專利包含了一些內(nèi)容,主要是處理永久磁鐵,這有助于本文討論的軸承。Wilson和斯圖~二[7]也應(yīng)用了永磁偏置的概念,在一個直線運動軸承。ohkami等人[8]對使用永久磁鐵的各種結(jié)構(gòu)的磁力軸承進行了一些有意義的比較研究。土屋等人的另一篇論文,[9]懸浮于永磁體的磁懸浮轉(zhuǎn)子高速轉(zhuǎn)子穩(wěn)定性的研究與評價。米克斯[10]還說出各種磁軸承的設(shè)計方法并進行比較和總結(jié),控制電磁鐵與磁軸承的永久磁鐵的作用相結(jié)合,重量和功耗減少,今天的稀土永磁體,特別是釹鐵磁體,擁有非常高的性能特點,在磁場強度,能源產(chǎn)品和熱質(zhì)量方面。磁鐵設(shè)計人員能夠?qū)⒋罅康拇拍芰考性谝粋€小的包中,使得更有效地利用可用空間。對永磁偏置磁軸承的設(shè)計本文設(shè)計的概念是由Studer[5報告的研究和發(fā)展變化,6]。下面兩節(jié)簡要說明如何在概念上操作的軸承。1.組合徑向/推力磁軸承描述此軸承設(shè)計,揭示了各種磁性路徑,這種軸承的徑向和推力相結(jié)合的控制。軸承的徑向部分是相同的,這是在上一節(jié)中描述的。然而,推力控制,實現(xiàn)由一個獨特的磁通配置。永久磁鐵的偏置磁通通過沿軸分裂之前,兩個推力桿,返回到永久磁鐵。一個積極的線圈產(chǎn)生磁場,在一個環(huán)形的形狀,對稱添加或減去在推力盤與推力桿之間的工作氣隙磁偏置。2.設(shè)計理念本課題設(shè)計的軸承是不同于所有電磁軸承的設(shè)計中,他們采用永久磁鐵和電磁鐵。永久磁鐵產(chǎn)生的偏置磁場在工作間隙和電磁鐵是用來調(diào)節(jié)這個流量。在工作間隙建立偏置磁場的目的是對磁驅(qū)動器的控制力方程線性化。偏置磁通是一個額定磁通密度的控制磁通變化的。如果零的偏置磁通,(只有一個相對的致動器操作的時間,),然后由致動器所產(chǎn)生的致動器的轉(zhuǎn)子上的二次力法,即,該力將在空氣間隙中的磁通密度的平方成正比。因此,強制轉(zhuǎn)換率將是零,當(dāng)轉(zhuǎn)子處于額定平衡位置和瞬態(tài)響應(yīng)將受到不利影響。如果,軸承磁通調(diào)制約一個非零的偏置磁通,(與相對的致動器對稱擾動),很容易地表明,力與控制磁通呈線性關(guān)系。下面的部分演示了這個重要關(guān)系。力量關(guān)系磁性致動器產(chǎn)生的空氣間隙中的空氣間隙的力可以表示由直接關(guān)系BG在空氣間隙和J.Lo的磁通密度是具有自由空間的通透性。如果僅僅是一個軸的軸承被認為具有這種特性,由于軸上的凈力作用,兩個相反的作用致動器力的差異。假設(shè)兩者的相對空氣間隙的區(qū)域是相同的,通過磁力軸承作用于軸上的力可以表示為F??諝忾g隙中的磁通密度由2個源提供,即永磁體和線圈。為了正確地提供差分控制,在2個間隙的磁通對稱擾動,一個間隙中的磁通增加,而相反的間隙中的磁通減少相同的量。這意味著BPM產(chǎn)生的永久磁鐵的磁通密度和由線圈產(chǎn)生的磁通密度。替代式。L3、4)代入式(2),擴展和簡化,作用在軸可以表示為Y表示對這種形式的軸力的方程,需要注意的是,力不僅是偏置電平,BPM比例很有趣,但它也是線性化控制流量。開環(huán)剛度和執(zhí)行器增益在水平方向上的受力所產(chǎn)生的力,可以準(zhǔn)確地近似截斷泰勒級數(shù)展開的以下方式:如果在磁路平衡,然后在公式的第一項(6)等于零在《X代表和單位代表轉(zhuǎn)子位移控制的電磁線圈的電流。“鴨王是KX參數(shù)定義為KX的量稱為開環(huán)剛度是由于水平位移在水平力的變化。開環(huán)剛度是負的,這意味著軸承是不穩(wěn)定的開環(huán)控制配置。不像一個正剛度彈簧位移,磁轉(zhuǎn)子會增加吸引力。它的數(shù)量表示軸承的執(zhí)行器增益。這是由于控制電流水平力的變化,垂直表達的成分存在等價表達式。用于開環(huán)剛度和執(zhí)行器增益的表達式通過執(zhí)行當(dāng)差異化的力表達式來確定。這些表達式采取的形式那里的土地H代表長度和退磁力,分別代表在永磁體和N是在電磁線圈的匝數(shù)??刂葡到y(tǒng)說明該系統(tǒng)的控制元件是檢測軸的運動的組件,確定所需的控制力,并由一個線圈電流所需的磁力軸承產(chǎn)生這種力量。該磁軸承系統(tǒng)有四個不同的組成部分:磁性致動器,位移傳感器和相關(guān)的調(diào)理電路,模擬量控制器和功率放大器。實際的磁軸承主要由電磁線圈、鐵磁極片、轉(zhuǎn)子和永久磁鐵組成。信號調(diào)理元件由電渦流感應(yīng)位移傳感器、信號放大和坐標(biāo)轉(zhuǎn)換電路組成。模擬控制器主要由三個獨立的組件組成。組成比例(對)、積分(我)和派生(和)補償網(wǎng)絡(luò)的組成部分。這三個并聯(lián)階段通過相加放大器相加,以產(chǎn)生模擬控制器的輸出。控制回路中的最后一個組成部分是功率放大器。該放大器,根據(jù)控制器的要求,提供所需的電流,以產(chǎn)生必要的磁通在軸承的磁場線圈。軸承轉(zhuǎn)子系統(tǒng)的動態(tài)可以結(jié)合控制電子的工作特性,形成一個閉環(huán)控制系統(tǒng)。該控制系統(tǒng)中的簡化框圖形式中顯示。位移傳感器特性、模擬控制器和放大器組成了反饋控制器相對復(fù)雜的傳遞函數(shù)。反饋控制器將轉(zhuǎn)子位置與致動器電流有關(guān)。此磁軸承系統(tǒng)的閉環(huán)傳遞函數(shù),確定從這個框圖,給出4.控制系統(tǒng)描述四磁極徑向軸承定子,在設(shè)計上是相同的兩個軸承。定子和轉(zhuǎn)子的構(gòu)造3%硅鐵層壓材料,厚度為0.007英寸。每個層壓組件由約100片。疊片膠合在一起使用一部分活化劑/樹脂膠粘劑和形狀是電火花線切割加工(電火花加工。)軸承定子的外約3英寸,軸向長度約0.7英寸。層片的外直徑約為1.5英寸。從軟磁鐵鐵的推軸承組件進行加工。高能永磁體,由geodymium鐵硼合金有30毫克的OE最大磁能積。軸承支撐體重約3.7IBM軸。5.承載能力應(yīng)用于軸的最大負荷的測量,在失去支持,被繪制為一個函數(shù)的比例控制器增益KP,在這個測試中,在軸上懸掛重物。用這樣一種方式,該力可以施加在所需的方向上構(gòu)造一個滑輪系統(tǒng)。圖中的力表示沿軸承軸施加的力。在較低的比例增益的最大負載的變化實際上是一個衡量系統(tǒng)的穩(wěn)定性閾值。它是在式8注),開環(huán)剛度,KX是定義在一個標(biāo)稱工作點,即轉(zhuǎn)子位置和控制電流等于零。然而,隨著軸承的靜載作用,穩(wěn)態(tài)電流開始增加。它可以顯示分析,KX具有控制電流的工作點的功能。即為控制電流的增大,KX也增加。增加比例增益補償增加的KX從而提高系統(tǒng)穩(wěn)定性的影響。在較高比例的收益的測量代表了更準(zhǔn)確的測量軸承的實際負載能力。提供足夠的穩(wěn)定性,使磁飽和的軸承磁極結(jié)構(gòu)達到。最大預(yù)測載荷是在磁飽和點上計算的。6.等效軸承剛度和阻尼測量的軸承的等效剛度,這個簡單的測量是通過施加一個恒定的力,進
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《中國古代繪畫擷英》課件
- 第六篇 稅收征管
- 2024年09月北京2024年中國郵政儲蓄銀行資金資管板塊校園招考筆試歷年參考題庫附帶答案詳解
- 2024年09月2024年中國銀行總行校園招聘160人筆試歷年參考題庫附帶答案詳解
- 2024年09月2024華夏銀行廈門分行校園招聘筆試歷年參考題庫附帶答案詳解
- 2024年09月2024“吉聚夢想青春啟航”吉林銀行秋季校園招聘筆試歷年參考題庫附帶答案詳解
- 2024年08月浙江空港私募基金管理有限公司招考1名基金事務(wù)部專員筆試歷年參考題庫附帶答案詳解
- 安全監(jiān)督工作總結(jié)
- 2024年08月恒豐銀行合肥分行社會招考工作人員(二)筆試歷年參考題庫附帶答案詳解
- 2024年08月中國銀行擬接收境內(nèi)院校應(yīng)屆畢業(yè)生情況(第六批)筆試歷年參考題庫附帶答案詳解
- 湖南省常德市桃源縣市級名校2024年中考數(shù)學(xué)模試卷含解析
- 2025屆高考政治一輪復(fù)習(xí):統(tǒng)編版選擇性必修2《法律與生活》知識點考點提綱詳細版
- 基于PLC的食品包裝機控制系統(tǒng)設(shè)計
- 2023北師大版新教材高中數(shù)學(xué)必修第一冊考前必背
- 盤扣式卸料平臺施工方案
- 12S108-1 倒流防止器選用及安裝
- 《Photoshop CC 2018圖像處理案例教程》中職全套教學(xué)課件
- 糧油采購 投標(biāo)方案(技術(shù)方案)
- 機械設(shè)計作業(yè)集
- 人民防空工程面積 計算規(guī)則
- 2024屆高考復(fù)習(xí)新課標(biāo)詞匯3000詞總表素材
評論
0/150
提交評論