高速旋轉(zhuǎn)機械中英文對照外文翻譯文獻_第1頁
高速旋轉(zhuǎn)機械中英文對照外文翻譯文獻_第2頁
高速旋轉(zhuǎn)機械中英文對照外文翻譯文獻_第3頁
高速旋轉(zhuǎn)機械中英文對照外文翻譯文獻_第4頁
高速旋轉(zhuǎn)機械中英文對照外文翻譯文獻_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

外文資料翻譯中英文對照外文翻譯文獻(文檔含英文原文和中文翻譯)LowPowerMagneticBearingDesignForHighSpeedRotatingMachineryP.E.Allaire,E.H.Maslen,andR.R.Humphris,DepartmentofMechanicalandAerospaceEngineeringUniversityofVirginiaCharlottesville,VA22901C.K.SortoreAuraSystems,Inc.EISegundo,CA90245P.A.StuderMagneticConceptsSilverSprings,MD20901317SUMMARYAgneticsuspensiontechnologyhasadvancedtothepointofbeingabletoofferanumberofadvantagestoavarietyofapplicationsintherotatingmachineryandaerospacefields.Onestrongadvantageofmagneticbearingsoverconventionalbearingsisthedecreaseinpowerconsumption.Theuseofpermanentmagnets,alongwithelectromagnets,isoneappealingoptionwhichcanfurtherreducethepowerconsumptionofthebearing.Thedesignandconstructionofasetofpermanentmagnetbiased,activelycontrolledmagneticbearingsforaflexiblerotorispresented.Bothpermanentmagnetsandelectromagnetsareusedinaconfigurationwhicheffectivelyprovidesthenecessaryfluxesintheappropriateairgaps,whilesimultaneouslykeepingtheundesirabledestabilizingforcestoaminimum.Thedesignincludestworadialbearingsandathrustbearing.Thetheoreticaldevelopmentbehindthedesignisbrieflydiscussed.Experimentalperformanceresultsforasetofoperatingprototypebearingsispresented.Theresultsincludemeasurementsofloadcapacity,bearingstiffnessanddampingandthedynamicresponseoftherotor.Withfewexceptions,theexperimentalmeasurementsmatchedverywellwiththepredictedperformance.Thepowerconsumptionofthesebearingswasfoundtobesignificantlyreducedfromthatforacomparablesetofallelectromagneticbearing.INTRODUCTIONMagneticbearingshaveanumberofstrongadvantages.Onemostobviousadvantageistheirnon~ontacting,virtuallyfriction-freecharacteristics.Entirelubricationsystemsandtheneedformechanicaloilseals,whichaddtofrictionlossesandinstabilitiesassociatedwithcrosscoupledbearingcoefficients,canbeeliminatedbyusingthesetypesofbearings.Thelifeexpectancyofamagneticbearing,inmanycases,canbemuchhigherthanthatofconventionalbearing.Duetothenon~ontactingnatureofthebearings,mechanicalpartsdonotwearout.Thiscanobviouslyincreasesystemreliabilityanddecreasecostlyrepairsandnecessarymaintenancewhichinterruptprofitablemachineoperation.Ifdesignedproperly,amagneticbearingcanperformundermuchharsherconditionsandenvironmentsforextendedperiodsoftimewhichwouldnotbepossiblewithothertypesofbearings.Onefurtheradvantageofthefrictionlesscharacteristicofthesebearingsisthatofpowerloss.Thepowerconsumptionofaconventionalfluid-filmbearingisinmanycasesmuchmorethanforamagneticbearing.Powerlossreductionsofoneorderofmagnitudeormorecanbeexpectedwhenamachineisconvertedfromusingconventionalbearingstomagneticbearings.Avarietyofworkhasbeenaccomplishedonanumberofdifferentapplicationsandaspectsofmagneticbearings.Anextensiveamountofresearchhasbeenperformedbyanumberofuniversityandindustryresearchersonthedevelopmentofmagneticbearingsinan·industrialcannedmotorpump[1].AnumberofothersuccessfulindustrialapplicationsofmagneticbearingshasbeenreportedbyWeise[21.Burrowset.al.[3]presentsthedevelopmentandapplicationofamagneticbearingspecificallydesignedforthevibrationcontrolofaflexiblerotor.Keith,et.al.[4]successfullydevelopedaPC-baseddigitalcontrollerformagneticbearings.Continuingresearchisbeingperformedintheareasofdigitalandadaptivecontrolsformagneticbearings.Inresearchingtheuseofpermanentmagnetsincombinationwithelectromagnets,ofparticularinterestaretwopatentscreditedtoPhilipStuder[5,6].Thesepatentscontainanumberoffeatures,primarilydealingwithpermanentmagnets,whichhaveusefulapplicationtothebearingsdiscussedinthispaper.WilsonandStu~er[7]havealsoappliedthepermanentmagnetbiasconcepttoalinearmotionbearing.Ohkamiet.al.[8]haveperformedsomeinterestingcomparisonstudiesofmagneticbearingsofvariousconfigurationswhichusepermanentmagnets.AnotherpaperbyTsuchiyaet.al.[9]studiesandcommentsonthestabilityofahighspeedrotorwhichissuspendedinmagneticbearingsbiasedwithpermanentmagnets.Meeks[10]hasalsoperformedacomparisonofthevariousmagneticbearingdesignapproachesandconcludesthatthecombiningofactivelycontrolledelectromagnetswithpermanentmagnetsresultsinasuperiormagneticbearingintermsofsize,weightandpowerconsumption.Therareearthpermanentmagnetsoftoday,inparticularSm-CoandNd-Fe-Bomagnets,offerveryhighperformancecharacteristicsintermsofmagneticstrength,energyproductandthermalqualities.Themagnetdesignerisabletoconcentrateaverylargeamountofmagneticenergyinasmallpackage,makingmoreefficientuseofavailablespace.ThedesignconceptforthepermanentmagnetbiasedmagneticbearingdesigndiscussedinthispaperisavariationonresearchanddevelopmentreportedbyStuder[5,6].Thefollowingtwosectionsgiveabriefdescriptionofhowthebearingsconceptuallyoperate.RadialMagnetiCBearingDescriptionAdiagramofapermanentmagnetbiasedradialmagneticbearingisshowninFigure1.Thisbearingisdesignedtooperateatoneendoftherotorandcontrolradialforcesonly.Fouraxiallymagnetizedarcsegmentmagnetsarepositionedcircumferentiallyadjacenttothestator.Thebiasfluxgeneratedbythepermanentmagnetspassesdownthelaminatedstatorpoleleg,throughtheworkingairgap,axiallyalongtheshaft,thenreturnstothepermanentmagnetvia.aradialbiaspolepiece.Theactivecontrolfluxgeneratedbythecoilsalsopassesdownthestatorpolelegandthroughtheworkingairgap.Thereturnpathfortheactivefluxisthencircumferentiallyaroundthestator,asshowninFigure1.Thisdesignrequiresonlyfourpolesandfourcoils,unlikeanallelectromagneticdesignwhichgenerallyrequireseight.Inaddition,sincethecoilsforeachbearingaxisareconnectedinseries,thebearingcontrolsystemrequiresonlyfivecurrentamplifierchannels,whichishalfasmanyasrequiredoftheallelectromagneticbearing.CombinationRadial/ThrustMagneticBearingDescriptionAschematicofthisbearingdesign,revealingthevariousmagneticpaths,isshowninFigure2.Thisbearingcombinescontrolofbothradialandthrustforces.Theradialportionofthebearingisidenticaltothatwhichwasdescribedintheprevioussection.Thethrustcontrolhowever,isimplementedbyauniquemagneticfluxconfiguration.Thepermanentmagnetbiasfluxpassingalongtheshaftsplitsequallybetweenthetwothrustpolesbeforereturningtothepermanentmagnet.Asingleactivecoilproducesamagneticflux,intheshapeofatoroid,whichsymmetricallyaddsorsubtractstothebiasfluxintheworkingairgapsbetweenthethrustdiskandthrustpoles.DesignConceptThebearingsdesignedforthisprojectaredifferentfromallelectromagneticbearingdesignsinthattheyemploybothpermanentmagnetsandelectromagnets.Permanentmagnetsgeneratethebiasfluxintheworkingairgapsandelectromagnetsareusedtomodulatethisflux.Thepurposeofestablishingabiasfluxintheworkingairgapsistolinearizethegoverningforceequationofthemagneticactuator.Thebiasfluxisanominalfluxdensityaboutwhichthecontrolfluxisvaried.Ifabiasfluxofzeroisused,(onlyoneopposingactuatorisoperatedatatime,)thentheforcegeneratedbytheactuatorontherotorfollowsaquadraticforcelaw,i.e.,theforcewillbeproportionaltothesquareofthefluxdensityintheairgaps.Consequently,theforceslewratewillbezerowhentherotorisinthenominalbalancedpositionandthetransientresponsewillbeadverselyeffected.If,however,thebearingfluxesaremodulatedaboutanon-zerobiasflux,(withopposingactuatorssymmetricallyperturbed,)itiseasilyshownthattheforcebecomeslinearlyrelatedtothecontrolflux.Thefollowingsectiondemonstratesthisimportantrelation.ForceRelationshipsTheforcegeneratedinanairgapofareaAgandlengthgbyamagneticactuatorcanbeexpressedbythedirectrelationwhereBgisthefluxdensityintheairgapandJ.Loisthepermeabilityoffreespace.Ifonlyasingleaxisofthebearingisconsidered,thenthenetforceactingontheshaftwillbethedifferenceofthetwooppositeactingactuatorforces.Assumingtheareasofthetwoopposingairgapsarethesame,theforceactingontheshaftbythemagneticbearingcanbeexpressedasThefluxdensityintheairgapsisbeingsuppliedbytwosources,i.e.,thepermanentmagnetandthecoil.Inordertoproperlyprovidedifferentialcontrol,thefluxesinthetwogapsaresymmetricallyperturbedsothatthefluxinonegapisincreasedwhilethefluxintheoppositegapisdecreasedbythesameamount.ThisimpliesthatwhereBpmisthefluxdensitygeneratedby'thepermanentmagnetandBeisthefluxdensitygeneratedbythecoil.SubstitutingEqs.l3,4)intoEq.(2),expandingandsimplifying,theforceactingontheshaftcannowbeexpressedasByexpressingtheequationfortheforceontheshaftinthisform,itisinterestingtonotethattheforceisnotonlyproportionaltothebiaslevel,Bpm,butitisalsolinearizedwithrespecttothecontrolflux,Be..OpenLoopStiffnessandActuatorGainTheforcegeneratedbythebearinginthehorizontaldirection,Fx,canbeaccuratelyapproximatedbythetruncatedTaylorseriesexpansioninthefollowingway:Iftnemagneticcircuitisbalanced,thenthefirstterminEq.(6)isequaltozeroandwherexrepresentstherotordisplacementandierepresentsthecontrolcurrentintheelectromagneticcoil.TheparametersKxandKiaredefinedashequantityKxisreferredtoastheopenloopstiffnessandrepresentsthechangeinthehorizontalforceduetohorizontaldisplacement.Theopenloopstiffnessisalwaysnegativewhichimpliesthatthebearingisunstableintheopenloopcontrolconfiguration.Unlikeaactualspringwithapositivestiffness,apositivedispacementoftherotortowardthemagnetwillincreasetheattractiveforce.ThequantityKirepresentstheactuatorgainofthebearing.Itrepresentschangesinthehorizontalforceduetocontrolcurrent,ie.Equivalentexpressionsexistforthecomponentsoftheverticalforceexpression.Expressionsfortheopenloopstiffnessandtheactuatorgainaredeterminedbyperformingtheappropriatedifferentiationoftheforceexpression.TheseexpressionstakeontheformwhereLandHrepresentthelengthanddemagnetizationforce,respectively,ofthepermanentmagnetandNisthenumberofturnsintheelectromagneticcoil.ControlSystemDescriptionThecontrolelementsofthissystemarethosecomponentswhichdetectthemotionoftheshaft,determinetherequiredcontrolforceandgenerateacoilcurrentrequiredbythemagneticbearingtogeneratethisforce.Themagneticbearingsystemconsistsoffourdistinctcomponents:themagneticactuator,thedisplacementsensorsandassociatedconditioningcircuits,theanalogPIDcontrollerandthepoweramplifier.Theactualmagneticbearingmainlyconsistsoftheelectromagneticcoils,ironpolepieces,rotorandpermanentmagnets.Thesignalconditioningcomponentconsistsoftheeddycurrentinductiondisplacementsensors,signalamplificationandcoordinatetransformationcircuits.Theanalogcontrollerprimarilyconsistsofthreeseparatecomponents.Thecomponentstaketheformofproportional(P),integral(I)andderivative(D)compensationnetworks.Thesethreeparallelstagesareaddedtogetherthroughasummingamplifiertoproducetheoutputoftheanalogcontroller.Thelastcomponentinthecontrolloopisthepoweramplifier.Theamplifier,uponrequestofthecontroller,suppliestherequiredcurrenttomagneticcoilstoproducethenecessaryfluxesinthebearing.Thedynamicsofthebearing-rotorsystemcanbecombinedwiththeoperatingcharacteristicsofthecontrolelectronicstoformaclosed-loopcontrolsystem.ThiscontrolsystemisshowninasimplifiedblockdiagramforminFigure3.Thedisplacementsensorcharacteristics,analogcontrollerandamplifiermakeuptherelativelycomplextransferfunctionofthefeedbackcontroller,Gc(s).Thefeedbackcontrollerrelatestherotorpositiontotheactuatorcurrent.Theclosed-looptransferfunctionforthismagneticbearingsystem,asdeterminedfromthisblockdiagram,isgivenbywheremisthemassoftherotorsupportedbythebearing.PrototypeBearingConstructionThefour-poleradialbearingstators,asshowninthediagramsofFigures1and2,weredesignedtobeidenticalforbothbearings.Thestatorsandrotorswereconstructedof3%silicon-ironlaminationmaterialwhichhadathicknessof0.007inches.Eachlaminatedcomponentconsistsofapproximately100laminations.Thelaminationsweregluedtogetherusingatwopartactivator/resinadhesiveandtheshapewasmachinedbywireEDM(electricdischargemachining.)Thebearingstatorshaveanoutsidediameterofapproximately3.0inchesandanaxiallengthofapproximately0.7inches.Theoutsidediameterofthelaminatedrotorisapproximately1.5inches.Thethrustbearingcomponentsweremachinedfromsoftmagnetiron.Thehighenergypermanentmagnets,madeoutofageodymium-Iron-Boronalloy,haveamaximumenergyproductof30MG-Oe.Thebearingssupportashaftweighingapproximately3.7Ibm.LoadCapacityMeasurementsofthemaximumloadappliedtotheshaft,beforefallingoutofsupport,areplottedasafunctionofproportionalcontrollergain,Kp,inFigure4.Theforceinthistestwasappliedbyhangingweightsontheshaft.Apulleysystemwasconstructedinsuchawaythattheforcecouldbeappliedinthedesireddirection.Theforceintheplotsrepresentsforcesappliedalongthebearingaxes.Thevariationofthemaximumloadatlowerproportionalgainsisactuallyameasureofthestabilitythresholdofthesystem.ItisnotedinEq.t8)thattheopenloopstiffness,Kxisdefinedatanominaloperatingpoint,i.e.,rotorpositionandcontrolcurrentequaltozero.However,asthebearingisloadedwithastaticforce,thesteadystatecurrentbeginstoincrease.ItcanbeshownanalyticallythatKxisafunctionoftheoperatingpointofthecontrolcurrent.Thatis,asthecontrolcurrentcurrentincreases,Kxalsoincreases.IncreasingproportionalgainhastheeffectofcompensatingforthisincreaseinKxandconsequentlyincreasingthestabilityofthesystem.Themeasurementsmadeathigherproportionalgainsrepresentamoreaccuratemeasureoftheactualloadcapacityofthebearing.Enoughstabilityisprovidedsothatmagneticsaturationisreachedinthebearingpolestructures.ThemaximumpredictedloadsintheplotsofFigure4arecalculatedatthepointofmagneticsaturation.EquivalentBearingStiffnessandDampingMeasurementsoftheequivalentstiffnessofthebearingsareshowninFigure5.Thissimplemeasurementwasperformedbyapplyingaconstantforce,~F,andnotingthedisplacement,~x,oftheshaft(controllerintegratorsturnedoff.)ThestiffnessthenisgivensimplybyKeq=~F/~x.Alinearregressionwasperformedonthemeasureddata,whichresultedinverygoodcorrelation,ascanbeobservedintheplots.Itisnotedthattheproportionalgainhasadirecteffectonthestiffnessofthebearings,ashasbeenpreviouslydemonstratedbyHumphris,et.al.[11].Relativedampinginthebearingswasinvestigatedfromawhitenoisefrequencyresponseanalysisofthebearingandrotor.Theanalysiswasperformedbyinjectingnoise,composedofallfrequenciesofinterest,intooneaxisoftheturbine-endradialbearing,andperformingaFFT(FastFourierTransform)analysisonthevibrationresponseofthataxis.Thislinearfrequencyresponse,composedof100averages,isshowninFigure6.Thederivativecontrollergain,Krwasvariedthrougharangeofvaluesasnotedintheplot.Asexpected,thederivativegainhadadirecteffectonthedampinginthebearings[11].Thefirstlargespikerepresentsthefirsttwomodesofshaftvibration.Theyareveryclosetogetherinfrequencyandessentiallyindistinguishable.Thefrequencyofthesecondspikeisthethirdmodeofvibrationandthethirdsmallspikeatapproximately60,000cpmisthefourthmode.Itisnotedthatthevariationofthederivativegainstronglyeffectsthefirsttwomodes,hasasmalleffectonthethirdmodeandvirtuallynoinfluenceonthevibrationamplitudeofthefourthmode.CriticalSpeedsandRotorResponseThedampedsynchronouscriticalspeedsoftheflexibleshaftsupportedbythesebearingscanbeapproximatelydeterminedfromthewhitenoisefrequencyresponseplotsofFigure6.Thesevalues,however,representthezerospeednaturalfrequencies,andthegyroscopicstiffeningeffectsofanyattacheddiskswouldnotbeincluded.Sincethenaturalfrequencyisgivenby,wherekistheshaftstiffnessandminthemodalmassoftherotor,itisofcourseexpectedthattheobservedcriticalspeeds,whentheshaftwasspinning,wouldbehigher.PlotsshowingthevibrationmagnitudeandphasefortheshaftspeedsthatwereobtainedisincludedinFigure7.Amplitudeinformationwastakendirectlyfromthemagneticbearingsensorsandakey-phasesensorwasusedtoprovidethephaseinformation.AccordingtothemaximumvibrationamplitudesobservedinFigure7,thefirstvibrationmodeisobservedtooccuratapproximately10,000rpmandthesecondatapproximately13,000rpm.PowerConsumptionFinally,anumberofpowerconsumptionmeasurementsweremade.Measurementsofthepowerweretakenwithawattmeterforanumberofcases.Thismeterisusedwiththeassumptionthatthemeasuredvoltageandcurrentbeingsuppliedtothecontrolelectronicsissinusoidalinnature.Inaddition,itisrealizedthatitrepresentsasomewhatgrossmeasurementasitincludesalltheinefficienciesofthevariouselectroniccomponents.Table1summarizestheresults.Thenon~ssentialelectronicdiagnosticcomponentsofthebearingsystemwereobservedtoconsumeonlyabout7watts.Thesemeasurementsrepresentasignificantimprovementoverthe500wattsofapproximatetotalpowerconsumedbyacomparablecurrentbiasedallelectromagneticbearingdesign.CONCLUSIONSThebrieftheorywhichwaspresentedinthispaperestablishedthebasicelectromagneticandmechanicalrelationshipsnecessarytodevelopasetofpermanentmagnetbiasedmagneticbearings.Thedesigninvolvedbothradialandthrustbearings.Theavailabilityofnewerrare-earthhighenergypermanentmagnetsmadeitpossibletoeffectivelyprovidethenecessarybiasfluxesinthebearing.Thebearingsandrotorweresuccessfullyconstructedandoperated.Anumberoftestsandexperimentswereperformedonthebearing-rotorsystem.Thetestsconsistedofloadcapacity,stiffnessanddampingmeasurements.Theresultsprovedtobeverypositiveinthatthetheoreticalpredictionsandtheobservedperformancematchedreasonablywell,givingcredibilitytothemodelswhichwereusedtoperformtheanalysis.Ofparticularinterestforthisstudywasthemeasuredpowerconsumptionofthebearings.Itclearlydemonstratesthattheuseofpermanentmagnetscanimprovetheoperatingefficiencyofanactivemagneticbearing.Itwassuccessfullyobservedanddemonstratedthatthesebearingshavestrongpotentialforfutureuseasefficient,reliablebearings.However,furtherresearchanddevelopmentisrequiredintheareasofcontrols,magneticmaterialsandactuatordesignbeforeitispossibletoinstallthemintoausefulindustrialapplication.REFERENCES1.AllaireP.;Imlach,J.;McDonald,J.;Humphris,R.;Lewis,D.;Banerjee,B.;Blair,B.;Clayton,J.;Flack,R.:"Design,ConstructionandTestofMagneticBearingsinanIndustrialCannedMotorPump,"PumpUsersSymposium,TexasA&M,Houston,TX,May1989.2.Weise,D.A.:"PresentIndustrialApplicationsofActiveMagneticBearings,"Presentedatthe22ndIntersocietyEnergyConversionEngineeringConference,Philadelphia,Pennsylvania,August1987.3.Burrows,C.R.,Sahinkaya,N.;Traxler,A.;andSchweitzer,G.:"DesignandApplicationofaMagneticBearingforVibrationControlandStabilizationofaFlexibleRotor,"ProceedingsoftheFirstInternationalMagneticBearingsSymposium,ETHZurich,Switzerland,June1988.4.KeithF.J.,Williams,R.D.;Allaire,P.E.;andSchafer,R.M.:"DigitalControlofMagneticBearingsSupportingaMultimassFlexibleRotor,"PresentedattheMagneticSuspensionTechnologyWorkshop,Hampton,Virginia,February1988.5.Studer.P.A.:NASA,MagneticBearing,Patent3865442,PatentApplication100637,February1975.6.Studer,P.A.:NASA,LinearMagneticBearing,Patent4387935,PatentApplication214361,December1980.7.Wilson,M.;andStuder,P.A.:"LinearMagneticBearings,"PresentedattheInternationalWorkshoponRareEarth-CobaltMagnetsandTheirApplications,Roanoake,Virginia,June1981.8.Ohkami,Y.,Okamato,0.;Kida,T.;Murakami,C.;Nakajima,A.;Hagihara,S.;andYabuuchi,K.:"AComparisonStudyofVariousTypesofMagneticBearingsUtilizingPermanentMagnets,"PresentedattheInternationalWorkshoponRareEarth-CobaltPermanentMagnetsandTheirApplications,Roanoake,Virginia,June1981.9.Tsuchiya,K;Inoue,M.;Nakajima,A.;Ohkami,Y.;andMurakami,C.:"OnStabilityofMagneticallySuspendedRotoratHighRotationalSpeed,."PresentedattheAerospaceSciencesMeeting,Reno,Nevada,January1989.10.Meeks,C.:"TrendsinMagneticBearingDesign,"PaperpresentedatNavalSeaSystemsCommandMagneticBearingForum,Washington,D.C.,July1989.高速旋轉(zhuǎn)機械的低功率磁力軸承設(shè)計總結(jié):磁懸液研究具有先進的研發(fā)技術(shù),有一定的優(yōu)勢,廣泛應(yīng)用于旋轉(zhuǎn)機械和航空航天等領(lǐng)域。最突出的優(yōu)勢,磁力軸承比傳統(tǒng)的軸承功耗少。電磁鐵是一個十分具有吸引力的選擇,它可以進一步降低軸承的功耗。一組永久磁鐵偏置,主動控制的磁軸承的柔性轉(zhuǎn)子。永久磁鐵和電磁鐵的配置有效地提供通量在合適的氣隙,同時將不穩(wěn)定力量降到最低。該設(shè)計包括2個徑向軸承和一個推力軸承。對設(shè)計理論和發(fā)展進行了簡要討論。一組操作的原型軸承的實驗性能結(jié)果如下,結(jié)果包括負載能力的測量,軸承剛度和阻尼和轉(zhuǎn)子的動態(tài)響應(yīng)。有幾個情況是例外,實驗測量相匹配的預(yù)測性能非常好,這些軸承的功率消耗顯減少。簡介:磁力軸承有許多優(yōu)點。一個最明顯的優(yōu)勢是無摩擦的特點。整個潤滑系統(tǒng)和機械油封,這增加了摩擦損失和不穩(wěn)定性與交叉耦合軸承系數(shù),可以消除這些類型的軸承的摩擦。一個磁力軸承的壽命,在正常情況下,可以遠高于傳統(tǒng)的軸承。由于好性質(zhì)的軸承,機械零件不磨損。這可以明顯提高系統(tǒng)的可靠性,降低成本的維修,中斷盈利機器操作。如果設(shè)計得當(dāng),磁軸承工作的時間是不可能與其他類型的軸承長時間在嚴(yán)酷的條件和環(huán)境下進行。對于這些軸承的摩擦特性,另一個優(yōu)點是功率損失。傳統(tǒng)的流體膜軸承的功率消耗無時無刻,遠遠超過了磁性軸承。當(dāng)一臺機器使用傳統(tǒng)的軸承到換用磁力軸承的時候,可以從一個數(shù)量級或更高的減少功率損耗。各種各樣的程序完成了一些不同的工作和磁性軸承的運行。許多研究人員和工業(yè)研究人員已經(jīng)進行了大量的實驗研究,工業(yè)屏蔽電機泵的磁軸承的發(fā)展[1],和多磁軸承在工業(yè)廣泛應(yīng)用已被魏澤[2]報道。為撓性轉(zhuǎn)子振動控制系統(tǒng)的開發(fā)與應(yīng)[4],成功研制出一種基于微機的磁力軸承數(shù)字控制器。正在進行的數(shù)字和自適應(yīng)控制的磁軸承的持續(xù)研究,在研究永磁體結(jié)合電磁鐵的使用,兩個專利歸功于菲利普[5,6]。這些專利包含了一些內(nèi)容,主要是處理永久磁鐵,這有助于本文討論的軸承。Wilson和斯圖~二[7]也應(yīng)用了永磁偏置的概念,在一個直線運動軸承。ohkami等人[8]對使用永久磁鐵的各種結(jié)構(gòu)的磁力軸承進行了一些有意義的比較研究。土屋等人的另一篇論文,[9]懸浮于永磁體的磁懸浮轉(zhuǎn)子高速轉(zhuǎn)子穩(wěn)定性的研究與評價。米克斯[10]還說出各種磁軸承的設(shè)計方法并進行比較和總結(jié),控制電磁鐵與磁軸承的永久磁鐵的作用相結(jié)合,重量和功耗減少,今天的稀土永磁體,特別是釹鐵磁體,擁有非常高的性能特點,在磁場強度,能源產(chǎn)品和熱質(zhì)量方面。磁鐵設(shè)計人員能夠?qū)⒋罅康拇拍芰考性谝粋€小的包中,使得更有效地利用可用空間。對永磁偏置磁軸承的設(shè)計本文設(shè)計的概念是由Studer[5報告的研究和發(fā)展變化,6]。下面兩節(jié)簡要說明如何在概念上操作的軸承。1.組合徑向/推力磁軸承描述此軸承設(shè)計,揭示了各種磁性路徑,這種軸承的徑向和推力相結(jié)合的控制。軸承的徑向部分是相同的,這是在上一節(jié)中描述的。然而,推力控制,實現(xiàn)由一個獨特的磁通配置。永久磁鐵的偏置磁通通過沿軸分裂之前,兩個推力桿,返回到永久磁鐵。一個積極的線圈產(chǎn)生磁場,在一個環(huán)形的形狀,對稱添加或減去在推力盤與推力桿之間的工作氣隙磁偏置。2.設(shè)計理念本課題設(shè)計的軸承是不同于所有電磁軸承的設(shè)計中,他們采用永久磁鐵和電磁鐵。永久磁鐵產(chǎn)生的偏置磁場在工作間隙和電磁鐵是用來調(diào)節(jié)這個流量。在工作間隙建立偏置磁場的目的是對磁驅(qū)動器的控制力方程線性化。偏置磁通是一個額定磁通密度的控制磁通變化的。如果零的偏置磁通,(只有一個相對的致動器操作的時間,),然后由致動器所產(chǎn)生的致動器的轉(zhuǎn)子上的二次力法,即,該力將在空氣間隙中的磁通密度的平方成正比。因此,強制轉(zhuǎn)換率將是零,當(dāng)轉(zhuǎn)子處于額定平衡位置和瞬態(tài)響應(yīng)將受到不利影響。如果,軸承磁通調(diào)制約一個非零的偏置磁通,(與相對的致動器對稱擾動),很容易地表明,力與控制磁通呈線性關(guān)系。下面的部分演示了這個重要關(guān)系。力量關(guān)系磁性致動器產(chǎn)生的空氣間隙中的空氣間隙的力可以表示由直接關(guān)系BG在空氣間隙和J.Lo的磁通密度是具有自由空間的通透性。如果僅僅是一個軸的軸承被認為具有這種特性,由于軸上的凈力作用,兩個相反的作用致動器力的差異。假設(shè)兩者的相對空氣間隙的區(qū)域是相同的,通過磁力軸承作用于軸上的力可以表示為F??諝忾g隙中的磁通密度由2個源提供,即永磁體和線圈。為了正確地提供差分控制,在2個間隙的磁通對稱擾動,一個間隙中的磁通增加,而相反的間隙中的磁通減少相同的量。這意味著BPM產(chǎn)生的永久磁鐵的磁通密度和由線圈產(chǎn)生的磁通密度。替代式。L3、4)代入式(2),擴展和簡化,作用在軸可以表示為Y表示對這種形式的軸力的方程,需要注意的是,力不僅是偏置電平,BPM比例很有趣,但它也是線性化控制流量。開環(huán)剛度和執(zhí)行器增益在水平方向上的受力所產(chǎn)生的力,可以準(zhǔn)確地近似截斷泰勒級數(shù)展開的以下方式:如果在磁路平衡,然后在公式的第一項(6)等于零在《X代表和單位代表轉(zhuǎn)子位移控制的電磁線圈的電流。“鴨王是KX參數(shù)定義為KX的量稱為開環(huán)剛度是由于水平位移在水平力的變化。開環(huán)剛度是負的,這意味著軸承是不穩(wěn)定的開環(huán)控制配置。不像一個正剛度彈簧位移,磁轉(zhuǎn)子會增加吸引力。它的數(shù)量表示軸承的執(zhí)行器增益。這是由于控制電流水平力的變化,垂直表達的成分存在等價表達式。用于開環(huán)剛度和執(zhí)行器增益的表達式通過執(zhí)行當(dāng)差異化的力表達式來確定。這些表達式采取的形式那里的土地H代表長度和退磁力,分別代表在永磁體和N是在電磁線圈的匝數(shù)??刂葡到y(tǒng)說明該系統(tǒng)的控制元件是檢測軸的運動的組件,確定所需的控制力,并由一個線圈電流所需的磁力軸承產(chǎn)生這種力量。該磁軸承系統(tǒng)有四個不同的組成部分:磁性致動器,位移傳感器和相關(guān)的調(diào)理電路,模擬量控制器和功率放大器。實際的磁軸承主要由電磁線圈、鐵磁極片、轉(zhuǎn)子和永久磁鐵組成。信號調(diào)理元件由電渦流感應(yīng)位移傳感器、信號放大和坐標(biāo)轉(zhuǎn)換電路組成。模擬控制器主要由三個獨立的組件組成。組成比例(對)、積分(我)和派生(和)補償網(wǎng)絡(luò)的組成部分。這三個并聯(lián)階段通過相加放大器相加,以產(chǎn)生模擬控制器的輸出。控制回路中的最后一個組成部分是功率放大器。該放大器,根據(jù)控制器的要求,提供所需的電流,以產(chǎn)生必要的磁通在軸承的磁場線圈。軸承轉(zhuǎn)子系統(tǒng)的動態(tài)可以結(jié)合控制電子的工作特性,形成一個閉環(huán)控制系統(tǒng)。該控制系統(tǒng)中的簡化框圖形式中顯示。位移傳感器特性、模擬控制器和放大器組成了反饋控制器相對復(fù)雜的傳遞函數(shù)。反饋控制器將轉(zhuǎn)子位置與致動器電流有關(guān)。此磁軸承系統(tǒng)的閉環(huán)傳遞函數(shù),確定從這個框圖,給出4.控制系統(tǒng)描述四磁極徑向軸承定子,在設(shè)計上是相同的兩個軸承。定子和轉(zhuǎn)子的構(gòu)造3%硅鐵層壓材料,厚度為0.007英寸。每個層壓組件由約100片。疊片膠合在一起使用一部分活化劑/樹脂膠粘劑和形狀是電火花線切割加工(電火花加工。)軸承定子的外約3英寸,軸向長度約0.7英寸。層片的外直徑約為1.5英寸。從軟磁鐵鐵的推軸承組件進行加工。高能永磁體,由geodymium鐵硼合金有30毫克的OE最大磁能積。軸承支撐體重約3.7IBM軸。5.承載能力應(yīng)用于軸的最大負荷的測量,在失去支持,被繪制為一個函數(shù)的比例控制器增益KP,在這個測試中,在軸上懸掛重物。用這樣一種方式,該力可以施加在所需的方向上構(gòu)造一個滑輪系統(tǒng)。圖中的力表示沿軸承軸施加的力。在較低的比例增益的最大負載的變化實際上是一個衡量系統(tǒng)的穩(wěn)定性閾值。它是在式8注),開環(huán)剛度,KX是定義在一個標(biāo)稱工作點,即轉(zhuǎn)子位置和控制電流等于零。然而,隨著軸承的靜載作用,穩(wěn)態(tài)電流開始增加。它可以顯示分析,KX具有控制電流的工作點的功能。即為控制電流的增大,KX也增加。增加比例增益補償增加的KX從而提高系統(tǒng)穩(wěn)定性的影響。在較高比例的收益的測量代表了更準(zhǔn)確的測量軸承的實際負載能力。提供足夠的穩(wěn)定性,使磁飽和的軸承磁極結(jié)構(gòu)達到。最大預(yù)測載荷是在磁飽和點上計算的。6.等效軸承剛度和阻尼測量的軸承的等效剛度,這個簡單的測量是通過施加一個恒定的力,進

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論