版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆河南省鄭州市嵩陽高級中學(xué)高三上數(shù)學(xué)期末聯(lián)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合A,則集合()A. B. C. D.2.已知函數(shù)的零點(diǎn)為m,若存在實(shí)數(shù)n使且,則實(shí)數(shù)a的取值范圍是()A. B. C. D.3.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點(diǎn),則球的表面積為()A. B. C. D.4.曲線上任意一點(diǎn)處的切線斜率的最小值為()A.3 B.2 C. D.15.已知函數(shù)f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.6.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,D是AB的中點(diǎn),若,且,則面積的最大值是()A. B. C. D.7.已知雙曲線,為坐標(biāo)原點(diǎn),、為其左、右焦點(diǎn),點(diǎn)在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.8.設(shè),,是非零向量.若,則()A. B. C. D.9.等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差為()A.-2 B.2 C.4 D.710.將一張邊長為的紙片按如圖(1)所示陰影部分裁去四個(gè)全等的等腰三角形,將余下部分沿虛線折疊并拼成一個(gè)有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所示,則正四棱錐的體積是()A. B. C. D.11.已知是函數(shù)的極大值點(diǎn),則的取值范圍是A. B.C. D.12.函數(shù)在上單調(diào)遞減的充要條件是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)為偶函數(shù),則________.14.已知,圓,直線PM,PN分別與圓O相切,切點(diǎn)為M,N,若,則的最小值為________.15.設(shè)點(diǎn)P在函數(shù)的圖象上,點(diǎn)Q在函數(shù)的圖象上,則線段PQ長度的最小值為_________16.設(shè)是等比數(shù)列的前項(xiàng)的和,成等差數(shù)列,則的值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的準(zhǔn)線過橢圓C:(a>b>0)的左焦點(diǎn)F,且點(diǎn)F到直線l:(c為橢圓焦距的一半)的距離為4.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點(diǎn)F做直線與橢圓C交于A,B兩點(diǎn),P是AB的中點(diǎn),線段AB的中垂線交直線l于點(diǎn)Q.若,求直線AB的方程.18.(12分)已知橢圓與x軸負(fù)半軸交于,離心率.(1)求橢圓C的方程;(2)設(shè)直線與橢圓C交于兩點(diǎn),連接AM,AN并延長交直線x=4于兩點(diǎn),若,直線MN是否恒過定點(diǎn),如果是,請求出定點(diǎn)坐標(biāo),如果不是,請說明理由.19.(12分)每年3月20日是國際幸福日,某電視臺隨機(jī)調(diào)查某一社區(qū)人們的幸福度.現(xiàn)從該社區(qū)群中隨機(jī)抽取18名,用“10分制”記錄了他們的幸福度指數(shù),結(jié)果見如圖所示莖葉圖,其中以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉.若幸福度不低于8.5分,則稱該人的幸福度為“很幸?!保?Ⅰ)求從這18人中隨機(jī)選取3人,至少有1人是“很幸?!钡母怕剩?Ⅱ)以這18人的樣本數(shù)據(jù)來估計(jì)整個(gè)社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記表示抽到“很幸?!钡娜藬?shù),求的分布列及.20.(12分)如圖,D是在△ABC邊AC上的一點(diǎn),△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長.21.(12分)橢圓:的離心率為,點(diǎn)為橢圓上的一點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若斜率為的直線過點(diǎn),且與橢圓交于兩點(diǎn),為橢圓的下頂點(diǎn),求證:對于任意的實(shí)數(shù),直線的斜率之積為定值.22.(10分)某機(jī)構(gòu)組織的家庭教育活動(dòng)上有一個(gè)游戲,每次由一個(gè)小孩與其一位家長參與,測試家長對小孩飲食習(xí)慣的了解程度.在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據(jù)自己的喜愛程度對其排序,然后由家長猜測小孩的排序結(jié)果.設(shè)小孩對四種食物排除的序號依次為xAxBxCxD,家長猜測的序號依次為yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四個(gè)數(shù)字的一種排列.定義隨機(jī)變量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X來衡量家長對小孩飲食習(xí)慣的了解程度.(1)若參與游戲的家長對小孩的飲食習(xí)慣完全不了解.(?。┣笏麄冊谝惠営螒蛑?,對四種食物排出的序號完全不同的概率;(ⅱ)求X的分布列(簡要說明方法,不用寫出詳細(xì)計(jì)算過程);(2)若有一組小孩和家長進(jìn)行來三輪游戲,三輪的結(jié)果都滿足X<4,請判斷這位家長對小孩飲食習(xí)慣是否了解,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
化簡集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點(diǎn)睛】本題考查集合間的運(yùn)算,屬于基礎(chǔ)題.2、D【解析】
易知單調(diào)遞增,由可得唯一零點(diǎn),通過已知可求得,則問題轉(zhuǎn)化為使方程在區(qū)間上有解,化簡可得,借助對號函數(shù)即可解得實(shí)數(shù)a的取值范圍.【詳解】易知函數(shù)單調(diào)遞增且有惟一的零點(diǎn)為,所以,∴,問題轉(zhuǎn)化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對勾函數(shù)”可知函數(shù)在區(qū)間的值域?yàn)?,?故選D.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)問題,考查了方程有解問題,分離參數(shù)法及構(gòu)造函數(shù)法的應(yīng)用,考查了利用“對勾函數(shù)”求參數(shù)取值范圍問題,難度較難.3、A【解析】
根據(jù)是中點(diǎn)這一條件,將棱錐的高轉(zhuǎn)化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設(shè)點(diǎn)到平面的距離為,因?yàn)槭侵悬c(diǎn),所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點(diǎn)睛】本題考查球的表面積,考查點(diǎn)到平面的距離,屬于中檔題.4、A【解析】
根據(jù)題意,求導(dǎo)后結(jié)合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據(jù)導(dǎo)數(shù)的幾何意義得:,即切線斜率,當(dāng)且僅當(dāng)?shù)忍柍闪ⅲ陨先我庖稽c(diǎn)處的切線斜率的最小值為3.故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用以及運(yùn)用基本不等式求最值,考查計(jì)算能力.5、A【解析】
先通過降冪公式和輔助角法將函數(shù)轉(zhuǎn)化為,再求最值.【詳解】已知函數(shù)f(x)=sin2x+sin2(x),=,=,因?yàn)?,所以f(x)的最小值為.故選:A【點(diǎn)睛】本題主要考查倍角公式及兩角和與差的三角函數(shù)的逆用,還考查了運(yùn)算求解的能力,屬于中檔題.6、A【解析】
根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點(diǎn),且,,即,即,,當(dāng)且僅當(dāng)時(shí),等號成立.的面積,所以面積的最大值為.故選:.【點(diǎn)睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運(yùn)算,屬于中檔題.7、D【解析】
根據(jù),先確定出的長度,然后利用雙曲線定義將轉(zhuǎn)化為的關(guān)系式,化簡后可得到的值,即可求漸近線方程.【詳解】如圖所示:因?yàn)?,所以,又因?yàn)?,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【點(diǎn)睛】本題考查根據(jù)雙曲線中的長度關(guān)系求解漸近線方程,難度一般.注意雙曲線的焦點(diǎn)到漸近線的距離等于虛軸長度的一半.8、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點(diǎn):平面向量數(shù)量積.【思路點(diǎn)睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點(diǎn),作為一類既能考查向量的線性運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及平面幾何知識,又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問題,實(shí)有其合理之處.解決此類問題的常用方法是:①利用已知條件,結(jié)合平面幾何知識及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運(yùn)算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運(yùn)算,此法對解含垂直關(guān)系的問題往往有很好效果.9、B【解析】
在等差數(shù)列中由等差數(shù)列公式與下標(biāo)和的性質(zhì)求得,再由等差數(shù)列通項(xiàng)公式求得公差.【詳解】在等差數(shù)列的前項(xiàng)和為,則則故選:B【點(diǎn)睛】本題考查等差數(shù)列中求由已知關(guān)系求公差,屬于基礎(chǔ)題.10、B【解析】設(shè)折成的四棱錐的底面邊長為,高為,則,故由題設(shè)可得,所以四棱錐的體積,應(yīng)選答案B.11、B【解析】
方法一:令,則,,當(dāng),時(shí),,單調(diào)遞減,∴時(shí),,,且,∴,即在上單調(diào)遞增,時(shí),,,且,∴,即在上單調(diào)遞減,∴是函數(shù)的極大值點(diǎn),∴滿足題意;當(dāng)時(shí),存在使得,即,又在上單調(diào)遞減,∴時(shí),,所以,這與是函數(shù)的極大值點(diǎn)矛盾.綜上,.故選B.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點(diǎn),須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時(shí),與相切于原點(diǎn),所以根據(jù)與的圖象關(guān)系,可得,故選B.12、C【解析】
先求導(dǎo)函數(shù),函數(shù)在上單調(diào)遞減則恒成立,對導(dǎo)函數(shù)不等式換元成二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結(jié)合圖象可知,,解得故.故選:C.【點(diǎn)睛】本題考查求三角函數(shù)單調(diào)區(qū)間.求三角函數(shù)單調(diào)區(qū)間的兩種方法:(1)代換法:就是將比較復(fù)雜的三角函數(shù)含自變量的代數(shù)式整體當(dāng)作一個(gè)角(或),利用基本三角函數(shù)的單調(diào)性列不等式求解;(2)圖象法:畫出三角函數(shù)的正、余弦曲線,結(jié)合圖象求它的單調(diào)區(qū)間.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
二次函數(shù)為偶函數(shù)說明一次項(xiàng)系數(shù)為0,求得參數(shù),將代入表達(dá)式即可求解【詳解】由為偶函數(shù),知其一次項(xiàng)的系數(shù)為0,所以,,所以,故答案為:-5【點(diǎn)睛】本題考查由奇偶性求解參數(shù),求函數(shù)值,屬于基礎(chǔ)題14、【解析】
由可知R為中點(diǎn),設(shè),由過切點(diǎn)的切線方程即可求得,,代入,,則在直線上,即可得方程為,將,代入化簡可得,則直線過定點(diǎn),由則點(diǎn)在以為直徑的圓上,則.即可求得.【詳解】如圖,由可知R為MN的中點(diǎn),所以,,設(shè),則切線PM的方程為,即,同理可得,因?yàn)镻M,PN都過,所以,,所以在直線上,從而直線MN方程為,因?yàn)?,所以,即直線MN方程為,所以直線MN過定點(diǎn),所以R在以O(shè)Q為直徑的圓上,所以.故答案為:.【點(diǎn)睛】本題考查直線和圓的位置關(guān)系,考查圓的切線方程,定點(diǎn)和圓上動(dòng)點(diǎn)距離的最值問題,考查學(xué)生的數(shù)形結(jié)合能力和計(jì)算能力,難度較難.15、【解析】
由解析式可分析兩函數(shù)互為反函數(shù),則圖象關(guān)于對稱,則點(diǎn)到的距離的最小值的二倍即為所求,利用導(dǎo)函數(shù)即可求得最值.【詳解】由題,因?yàn)榕c互為反函數(shù),則圖象關(guān)于對稱,設(shè)點(diǎn)為,則到直線的距離為,設(shè),則,令,即,所以當(dāng)時(shí),,即單調(diào)遞減;當(dāng)時(shí),,即單調(diào)遞增,所以,則,所以的最小值為,故答案為:【點(diǎn)睛】本題考查反函數(shù)的性質(zhì)的應(yīng)用,考查利用導(dǎo)函數(shù)研究函數(shù)的最值問題.16、2【解析】
設(shè)等比數(shù)列的公比設(shè)為再根據(jù)成等差數(shù)列利用基本量法求解再根據(jù)等比數(shù)列各項(xiàng)間的關(guān)系求解即可.【詳解】解:等比數(shù)列的公比設(shè)為成等差數(shù)列,可得若則顯然不成立,故則,化為解得,則故答案為:.【點(diǎn)睛】本題主要考查了等比數(shù)列的基本量求解以及運(yùn)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】
(1)由拋物線的準(zhǔn)線方程求出的值,確定左焦點(diǎn)坐標(biāo),再由點(diǎn)F到直線l:的距離為4,求出即可;(2)設(shè)直線方程,與橢圓方程聯(lián)立,運(yùn)用根與系數(shù)關(guān)系和弦長公式,以及兩直線垂直的條件和中點(diǎn)坐標(biāo)公式,即可得到所求直線的方程.【詳解】(1)拋物線的準(zhǔn)線方程為,,直線,點(diǎn)F到直線l的距離為,,所以橢圓的標(biāo)準(zhǔn)方程為;(2)依題意斜率不為0,又過點(diǎn),設(shè)方程為,聯(lián)立,消去得,,,設(shè),,,,線段AB的中垂線交直線l于點(diǎn)Q,所以橫坐標(biāo)為3,,,,平方整理得,解得或(舍去),,所求的直線方程為或.【點(diǎn)睛】本題考查橢圓的方程以及直線與橢圓的位置關(guān)系,要熟練應(yīng)用根與系數(shù)關(guān)系、相交弦長公式,合理運(yùn)用兩點(diǎn)間的距離公式,考查計(jì)算求解能力,屬于中檔題.18、(1)(2)直線恒過定點(diǎn),詳見解析【解析】
(1)依題意由橢圓的簡單性質(zhì)可求出,即得橢圓C的方程;(2)設(shè)直線的方程為:,聯(lián)立直線的方程與橢圓方程可求得點(diǎn)的坐標(biāo),同理可求出點(diǎn)的坐標(biāo),根據(jù)的坐標(biāo)可求出直線的方程,將其化簡成點(diǎn)斜式,即可求出定點(diǎn)坐標(biāo).【詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)設(shè)直線的方程為:,則∴或,∴,同理,當(dāng)時(shí),由有.∴,同理,又∴,當(dāng)時(shí),∴直線的方程為∴直線恒過定點(diǎn),當(dāng)時(shí),此時(shí)也過定點(diǎn)..綜上:直線恒過定點(diǎn).【點(diǎn)睛】本題主要考查利用橢圓的簡單性質(zhì)求橢圓的標(biāo)準(zhǔn)方程,以及直線與橢圓的位置關(guān)系應(yīng)用,定點(diǎn)問題的求法等,意在考查學(xué)生的邏輯推理能力和數(shù)學(xué)運(yùn)算能力,屬于難題.19、(Ⅰ).(Ⅱ)見解析.【解析】
(Ⅰ)人中很幸福的有人,可以先計(jì)算其逆事件,即人都認(rèn)為不很幸福的概率,再用減去人都認(rèn)為不很幸福的概率即可;(Ⅱ)根據(jù)題意,隨機(jī)變量,列出分布列,根據(jù)公式求出期望即可.【詳解】(Ⅰ)設(shè)事件抽出的人至少有人是“很幸?!钡?,則表示人都認(rèn)為不很幸福(Ⅱ)根據(jù)題意,隨機(jī)變量,的可能的取值為;;;所以隨機(jī)變量的分布列為:所以的期望【點(diǎn)睛】本題考查了離散型隨機(jī)變量的概率分布列,數(shù)學(xué)期望的求解,概率分布中的二項(xiàng)分布問題,屬于常規(guī)題型.20、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用三角形面積公式以及并結(jié)合正弦定理,可得結(jié)果.(Ⅱ)根據(jù),可得,然后使用余弦定理,可得結(jié)果.【詳解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以邊.【點(diǎn)睛】本題考查三角形面積公式,正弦定理以及余弦定理的應(yīng)用,關(guān)鍵在于識記公式,屬中檔題.21、(1);(2)證明見解析【解析】
(1)運(yùn)用離心率公式和點(diǎn)滿足橢圓方程,解得,,進(jìn)而得到橢圓方程;(2)設(shè)直線,代入橢圓方程,運(yùn)用韋達(dá)定理和直線的斜率公式,以及點(diǎn)在直線上滿足直線方程,化簡整理,即可得到定值.【詳解】(1)因?yàn)椋?,①又橢圓過點(diǎn),所以②由①②,解得所以橢圓的標(biāo)準(zhǔn)方程為.(2)證明設(shè)直線:,聯(lián)立得,設(shè),則易知故所以對于任意的,直線的斜率之積為定值.【點(diǎn)睛】本題考查橢圓的方程的求法,注意運(yùn)用離心率公式和點(diǎn)滿足橢圓方程,考查直線方程和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理和直線的斜率公式,化簡整理,考查運(yùn)算能力,屬于中檔題.22、(1)(?。áⅲ┓植急硪娊馕觯唬?)理由見解析【解析】
(1)(i)若家長對小孩子的飲食習(xí)慣完全不了解,則家長對小孩的排序是隨意猜測的,家長的排序有種等可能結(jié)果,利用列舉法求出其中滿足“家長的排序與對應(yīng)位置的數(shù)字完全不同”的情況有9種,由此能求出他們在一輪游戲中,對四種食物排出的序號完全不同的概率.
(ii)根據(jù)(i)的分析,同樣只考慮小孩排序?yàn)?234的情況,家長的排序一共有24種情況,由此能求出X的分布列.
(2)假設(shè)家長對小孩的飲食習(xí)慣完全不了解,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 獸醫(yī)專家2025年度顧問咨詢與技術(shù)支持合同2篇
- 2025版金融理財(cái)產(chǎn)品銷售合同履約保證書4篇
- 2025年度出租車租賃與品牌推廣合作合同3篇
- 2024禮品購銷合同模板購銷合同范本
- 2024版濟(jì)寧房屋租賃合同范本
- 二零二四年專業(yè)相機(jī)租賃服務(wù)合同附帶攝影師派遣及培訓(xùn)3篇
- 二零二五版茶葉種植基地土地流轉(zhuǎn)租賃合同3篇
- 2025年養(yǎng)老護(hù)理機(jī)構(gòu)PPP項(xiàng)目特許經(jīng)營合同3篇
- 2025年度城市基礎(chǔ)設(shè)施建設(shè)不定期借款合同3篇
- 二零二四年度2024綿陽租賃保證金合同模板3篇
- 觸發(fā)點(diǎn)療法:精準(zhǔn)解決身體疼痛的肌筋膜按壓療法
- 化膿性中耳炎
- 探析小學(xué)語文教學(xué)中融合思政教育的課堂教學(xué)
- 醫(yī)學(xué)科研誠信專項(xiàng)教育整治簡潔工作總結(jié)范文
- 班主任班級管理經(jīng)驗(yàn)分享PPT
- 小學(xué)英語單詞匯總大全打印
- 衛(wèi)生健康系統(tǒng)安全生產(chǎn)隱患全面排查
- GB/T 15114-2023鋁合金壓鑄件
- 2023年考研考博-考博英語-武漢大學(xué)考試歷年真題摘選含答案解析
- 貨物驗(yàn)收單表格模板
- MT/T 323-1993中雙鏈刮板輸送機(jī)用刮板
評論
0/150
提交評論