版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆黑龍江省伊春市嘉蔭縣第一中學數(shù)學高三第一學期期末質(zhì)量檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,,,,為的外心,若,,,則()A. B. C. D.2.已知等比數(shù)列的前項和為,若,且公比為2,則與的關(guān)系正確的是()A. B.C. D.3.如圖所示,網(wǎng)絡紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.84.記其中表示不大于x的最大整數(shù),若方程在在有7個不同的實數(shù)根,則實數(shù)k的取值范圍()A. B. C. D.5.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.6.已知全集,函數(shù)的定義域為,集合,則下列結(jié)論正確的是A. B.C. D.7.已知函數(shù),則下列判斷錯誤的是()A.的最小正周期為 B.的值域為C.的圖象關(guān)于直線對稱 D.的圖象關(guān)于點對稱8.已知等差數(shù)列中,若,則此數(shù)列中一定為0的是()A. B. C. D.9.已知拋物線的焦點為,若拋物線上的點關(guān)于直線對稱的點恰好在射線上,則直線被截得的弦長為()A. B. C. D.10.在邊長為的菱形中,,沿對角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.11.已知函數(shù)(),若函數(shù)有三個零點,則的取值范圍是()A. B.C. D.12.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項之和為()A.56383 B.57171 C.59189 D.61242二、填空題:本題共4小題,每小題5分,共20分。13.在四棱錐中,底面為正方形,面分別是棱的中點,過的平面交棱于點,則四邊形面積為__________.14.在平面直角坐標系中,雙曲線的一條準線與兩條漸近線所圍成的三角形的面積為______.15.若復數(shù)滿足,其中為虛數(shù)單位,則的共軛復數(shù)在復平面內(nèi)對應點的坐標為_____.16.若奇函數(shù)滿足,為R上的單調(diào)函數(shù),對任意實數(shù)都有,當時,,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當時,判斷是否是函數(shù)的極值點,并說明理由;(2)當時,不等式恒成立,求整數(shù)的最小值.18.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)設(shè)點,若直線與曲線相交于、兩點,求的值19.(12分)在中,角的對邊分別為,且.(1)求角的大??;(2)若函數(shù)圖象的一條對稱軸方程為且,求的值.20.(12分)設(shè)函數(shù),.(Ⅰ)討論的單調(diào)性;(Ⅱ)時,若,,求證:.21.(12分)已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)若在上恒成立,求的取值范圍.22.(10分)已知函數(shù)(,為自然對數(shù)的底數(shù)),.(1)若有兩個零點,求實數(shù)的取值范圍;(2)當時,對任意的恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
首先根據(jù)題中條件和三角形中幾何關(guān)系求出,,即可求出的值.【詳解】如圖所示過做三角形三邊的垂線,垂足分別為,,,過分別做,的平行線,,由題知,則外接圓半徑,因為,所以,又因為,所以,,由題可知,所以,,所以.故選:D.【點睛】本題主要考查了三角形外心的性質(zhì),正弦定理,平面向量分解定理,屬于一般題.2、C【解析】
在等比數(shù)列中,由即可表示之間的關(guān)系.【詳解】由題可知,等比數(shù)列中,且公比為2,故故選:C【點睛】本題考查等比數(shù)列求和公式的應用,屬于基礎(chǔ)題.3、A【解析】
先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.4、D【解析】
做出函數(shù)的圖象,問題轉(zhuǎn)化為函數(shù)的圖象在有7個交點,而函數(shù)在上有3個交點,則在上有4個不同的交點,數(shù)形結(jié)合即可求解.【詳解】作出函數(shù)的圖象如圖所示,由圖可知方程在上有3個不同的實數(shù)根,則在上有4個不同的實數(shù)根,當直線經(jīng)過時,;當直線經(jīng)過時,,可知當時,直線與的圖象在上有4個交點,即方程,在上有4個不同的實數(shù)根.故選:D.【點睛】本題考查方程根的個數(shù)求參數(shù),利用函數(shù)零點和方程之間的關(guān)系轉(zhuǎn)化為兩個函數(shù)的交點是解題的關(guān)鍵,運用數(shù)形結(jié)合是解決函數(shù)零點問題的基本思想,屬于中檔題.5、B【解析】
奇函數(shù)滿足定義域關(guān)于原點對稱且,在上即可.【詳解】A:因為定義域為,所以不可能時奇函數(shù),錯誤;B:定義域關(guān)于原點對稱,且滿足奇函數(shù),又,所以在上,正確;C:定義域關(guān)于原點對稱,且滿足奇函數(shù),,在上,因為,所以在上不是增函數(shù),錯誤;D:定義域關(guān)于原點對稱,且,滿足奇函數(shù),在上很明顯存在變號零點,所以在上不是增函數(shù),錯誤;故選:B【點睛】此題考查判斷函數(shù)奇偶性和單調(diào)性,注意奇偶性的前提定義域關(guān)于原點對稱,屬于簡單題目.6、A【解析】
求函數(shù)定義域得集合M,N后,再判斷.【詳解】由題意,,∴.故選A.【點睛】本題考查集合的運算,解題關(guān)鍵是確定集合中的元素.確定集合的元素時要注意代表元形式,集合是函數(shù)的定義域,還是函數(shù)的值域,是不等式的解集還是曲線上的點集,都由代表元決定.7、D【解析】
先將函數(shù)化為,再由三角函數(shù)的性質(zhì),逐項判斷,即可得出結(jié)果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數(shù)對稱軸可得:解得:,當,,故C正確;對于D,正弦函數(shù)對稱中心的橫坐標為:解得:若圖象關(guān)于點對稱,則解得:,故D錯誤;故選:D.【點睛】本題考查三角恒等變換,三角函數(shù)的性質(zhì),熟記三角函數(shù)基本公式和基本性質(zhì),考查了分析能力和計算能力,屬于基礎(chǔ)題.8、A【解析】
將已知條件轉(zhuǎn)化為的形式,由此確定數(shù)列為的項.【詳解】由于等差數(shù)列中,所以,化簡得,所以為.故選:A【點睛】本小題主要考查等差數(shù)列的基本量計算,屬于基礎(chǔ)題.9、B【解析】
由焦點得拋物線方程,設(shè)點的坐標為,根據(jù)對稱可求出點的坐標,寫出直線方程,聯(lián)立拋物線求交點,計算弦長即可.【詳解】拋物線的焦點為,則,即,設(shè)點的坐標為,點的坐標為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設(shè)直線與拋物線的另一個交點為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點睛】本題主要考查了拋物線的標準方程,簡單幾何性質(zhì),點關(guān)于直線對稱,屬于中檔題.10、A【解析】
畫圖取的中點M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點睛】此題考查三棱錐的外接球表面積,關(guān)鍵點是通過幾何關(guān)系求得球心位置和球半徑,方法較多,屬于較易題目.11、A【解析】
分段求解函數(shù)零點,數(shù)形結(jié)合,分類討論即可求得結(jié)果.【詳解】作出和,的圖像如下所示:函數(shù)有三個零點,等價于與有三個交點,又因為,且由圖可知,當時與有兩個交點,故只需當時,與有一個交點即可.若當時,時,顯然??=??(??)與??=4|??|有一個交點??,故滿足題意;時,顯然??=??(??)與??=4|??|沒有交點,故不滿足題意;時,顯然??=??(??)與??=4|??|也沒有交點,故不滿足題意;時,顯然與有一個交點,故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點睛】本題考查由函數(shù)零點的個數(shù)求參數(shù)范圍,屬中檔題.12、C【解析】
根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前項和公式,可得結(jié)果.【詳解】被5除余3且被7除余2的正整數(shù)構(gòu)成首項為23,公差為的等差數(shù)列,記數(shù)列則令,解得.故該數(shù)列各項之和為.故選:C.【點睛】本題考查等差數(shù)列的應用,屬基礎(chǔ)題。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè)是中點,由于分別是棱的中點,所以,所以,所以四邊形是平行四邊形.由于平面,所以,而,,所以平面,所以.由于,所以,也即,所以四邊形是矩形.而.從而.故答案為:.【點睛】本小題主要考查空間平面圖形面積的計算,考查線面垂直的判定,考查空間想象能力和邏輯推理能力,屬于中檔題.14、【解析】
求出雙曲線的漸近線方程,求出準線方程,求出三角形的頂點的坐標,然后求解面積.【詳解】解:雙曲線:雙曲線中,,,則雙曲線的一條準線方程為,雙曲線的漸近線方程為:,可得準線方程與雙曲線的兩條漸近線所圍成的三角形的頂點的坐標,,,,則三角形的面積為.故答案為:【點睛】本題考查雙曲線方程的應用,雙曲線的簡單性質(zhì)的應用,考查計算能力,屬于中檔題.15、【解析】
把已知等式變形,再由復數(shù)代數(shù)形式的乘除運算化簡,求出得答案.【詳解】,,則,的共軛復數(shù)在復平面內(nèi)對應點的坐標為,故答案為【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的代數(shù)表示法及其幾何意義準確計算是關(guān)鍵,是基礎(chǔ)題.16、【解析】
根據(jù)可得,函數(shù)是以為周期的函數(shù),令,可求,從而可得,代入解析式即可求解.【詳解】令,則,由,則,所以,解得,所以,由時,,所以時,;由,所以,所以函數(shù)是以為周期的函數(shù),,又函數(shù)為奇函數(shù),所以.故答案為:【點睛】本題主要考查了換元法求函數(shù)解析式、函數(shù)的奇偶性、周期性的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)是函數(shù)的極大值點,理由詳見解析;(2)1.【解析】
(1)將直接代入,對求導得,由于函數(shù)單調(diào)性不好判斷,故而構(gòu)造函數(shù),繼續(xù)求導,判斷導函數(shù)在左右兩邊的正負情況,最后得出,是函數(shù)的極大值點;(2)利用題目已有條件得,再證明時,不等式恒成立,即證,從而可知整數(shù)的最小值為1.【詳解】解:(1)當時,.令,則當時,.即在內(nèi)為減函數(shù),且∴當時,;當時,.∴在內(nèi)是增函數(shù),在內(nèi)是減函數(shù).綜上,是函數(shù)的極大值點.(2)由題意,得,即.現(xiàn)證明當時,不等式成立,即.即證令則∴當時,;當時,.∴在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,的最大值為.∴當時,.即當時,不等式成立.綜上,整數(shù)的最小值為.【點睛】本題考查學生利用導數(shù)處理函數(shù)的極值,最值,判斷函數(shù)的單調(diào)性,由此來求解函數(shù)中的參數(shù)的取值范圍,對學生要求較高,然后需要學生能構(gòu)造新函數(shù)處理恒成立問題,為難題18、(1)的普通方程為,的直角坐標方程為;(2).【解析】
(1)在曲線的參數(shù)方程中消去參數(shù)可得出曲線的普通方程,利用兩角和的正弦公式以及可將直線的極坐標方程化為普通方程;(2)設(shè)直線的參數(shù)方程為(為參數(shù)),并設(shè)點、所對應的參數(shù)分別為、,利用韋達定理可求得的值.【詳解】(1)由,得,,曲線的普通方程為,由,得,直線的直角坐標方程為;(2)設(shè)直線的參數(shù)方程為(為參數(shù)),代入,得,則,設(shè)、兩點對應參數(shù)分別為、,,,,,.【點睛】本題考查了參數(shù)方程、極坐標方程與普通方程之間的轉(zhuǎn)化,同時也考查了直線參數(shù)方程幾何意義的應用,考查計算能力,屬于中等題.19、(1)(2)【解析】
(1)由已知利用三角函數(shù)恒等變換的應用,正弦定理可求,即可求的值.(2)利用三角函數(shù)恒等變換的應用,可得,根據(jù)題意,得到,解得,得到函數(shù)的解析式,進而求得的值,利用三角函數(shù)恒等變換的應用可求的值.【詳解】(1)由題意,根據(jù)正弦定理,可得,又由,所以,可得,即,又因為,則,可得,∵,∴.(2)由(1)可得,所以函數(shù)的圖象的一條對稱軸方程為,∴,得,即,∴,又,∴,∴.【點睛】本題主要考查了三角函數(shù)恒等變換的應用,正弦定理在解三角形中的綜合應用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.20、(1)證明見解析;(2)證明見解析.【解析】
(1)首先對函數(shù)求導,再根據(jù)參數(shù)的取值,討論的正負,即可求出關(guān)于的單調(diào)性即可;(2)首先通過構(gòu)造新函數(shù),討論新函數(shù)的單調(diào)性,根據(jù)新函數(shù)的單調(diào)性證明.【詳解】(1),令,則,令得,當時,則在單調(diào)遞減,當時,則在單調(diào)遞增,所以,當時,,即,則在上單調(diào)遞增,當時,,易知當時,,當時,,由零點存在性定理知,,不妨設(shè),使得,當時,,即,當時,,即,當時,,即,所以在和上單調(diào)遞增,在單調(diào)遞減;(2)證明:構(gòu)造函數(shù),,,,整理得,,(當時等號成立),所以在上單調(diào)遞增,則,所以在上單調(diào)遞增,,這里不妨設(shè),欲證,即證由(1)知時,在上單調(diào)遞增,則需證,由已知有,只需證,即證,由在上單調(diào)遞增,且時,有,故成立,從而得證.【點睛】本題主要考查了導數(shù)含參
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工租賃機械合同范例
- 人力資源管理高級實驗模擬習題及答案
- 炮竹購銷合同范例
- 臨建板房合同范例
- 求一油漆購買合同范例
- 庫存油缸出售合同范例
- 庫房托管合同范例
- 公司擔保租房合同范例
- 棋牌室合租合同范例
- 唐山職業(yè)技術(shù)學院《納米材料與技術(shù)》2023-2024學年第一學期期末試卷
- unit 5(單元測試)-2024-2025學年人教PEP版英語三年級上冊
- 【課件】化學實驗與科學探究課件-2024-2025學年九年級化學人教版(2024)上冊
- 小學英語時態(tài)練習大全(附答案)-小學英語時態(tài)專項訓練及答案
- 七年級下冊數(shù)學課件:平行線中的拐點問題
- 2024年憲法與工會法知識競賽題庫及答案
- 2023-2024學年教科版科學四年級上冊期末測試卷附有答案
- 保密工作履職報告?zhèn)€人
- 七年級生物上冊 2.1.1 練習使用顯微鏡教案 (新版)新人教版
- 2024年深圳市房屋租賃合同參考模板(5篇)
- 2020年度多用爐操作規(guī)程
- DLT 1529-2016 配電自動化終端設(shè)備檢測規(guī)程
評論
0/150
提交評論