版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆貴州畢節(jié)大方縣三中高三上數(shù)學期末調(diào)研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若集合,,則()A. B. C. D.2.已知點是雙曲線上一點,若點到雙曲線的兩條漸近線的距離之積為,則雙曲線的離心率為()A. B. C. D.23.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.4.已知函數(shù),對任意的,,當時,,則下列判斷正確的是()A. B.函數(shù)在上遞增C.函數(shù)的一條對稱軸是 D.函數(shù)的一個對稱中心是5.記集合和集合表示的平面區(qū)域分別是和,若在區(qū)域內(nèi)任取一點,則該點落在區(qū)域的概率為()A. B. C. D.6.在中,,,分別為角,,的對邊,若的面為,且,則()A.1 B. C. D.7.已知集合,,若,則()A. B. C. D.8.已知函數(shù),集合,,則()A. B.C. D.9.過橢圓的左焦點的直線過的上頂點,且與橢圓相交于另一點,點在軸上的射影為,若,是坐標原點,則橢圓的離心率為()A. B. C. D.10.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或811.在中,為上異于,的任一點,為的中點,若,則等于()A. B. C. D.12.已知雙曲線,點是直線上任意一點,若圓與雙曲線的右支沒有公共點,則雙曲線的離心率取值范圍是().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.下圖是一個算法流程圖,則輸出的S的值是______.14.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機摸出2只球,則這2只球顏色不同的概率為__________.15.已知,滿足約束條件,則的最小值為______.16.已知集合,,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩形紙片中,,將矩形紙片的右下角沿線段折疊,使矩形的頂點B落在矩形的邊上,記該點為E,且折痕的兩端點M,N分別在邊上.設,的面積為S.(1)將l表示成θ的函數(shù),并確定θ的取值范圍;(2)求l的最小值及此時的值;(3)問當θ為何值時,的面積S取得最小值?并求出這個最小值.18.(12分)設實數(shù)滿足.(1)若,求的取值范圍;(2)若,,求證:.19.(12分)已知點,且,滿足條件的點的軌跡為曲線.(1)求曲線的方程;(2)是否存在過點的直線,直線與曲線相交于兩點,直線與軸分別交于兩點,使得?若存在,求出直線的方程;若不存在,請說明理由.20.(12分)已知拋物線的焦點為,點,點為拋物線上的動點.(1)若的最小值為,求實數(shù)的值;(2)設線段的中點為,其中為坐標原點,若,求的面積.21.(12分)已知橢圓經(jīng)過點,離心率為.(1)求橢圓的方程;(2)經(jīng)過點且斜率存在的直線交橢圓于兩點,點與點關于坐標原點對稱.連接.求證:存在實數(shù),使得成立.22.(10分)設函數(shù),直線與函數(shù)圖象相鄰兩交點的距離為.(Ⅰ)求的值;(Ⅱ)在中,角所對的邊分別是,若點是函數(shù)圖象的一個對稱中心,且,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
用轉化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點睛】本題考查了并集及其運算,分式不等式的解法,熟練掌握并集的定義是解本題的關鍵.屬于基礎題.2、A【解析】
設點的坐標為,代入橢圓方程可得,然后分別求出點到兩條漸近線的距離,由距離之積為,并結合,可得到的齊次方程,進而可求出離心率的值.【詳解】設點的坐標為,有,得.雙曲線的兩條漸近線方程為和,則點到雙曲線的兩條漸近線的距離之積為,所以,則,即,故,即,所以.故選:A.【點睛】本題考查雙曲線的離心率,構造的齊次方程是解決本題的關鍵,屬于中檔題.3、C【解析】
判斷出已知條件中雙曲線的漸近線方程,求得四個選項中雙曲線的漸近線方程,由此確定選項.【詳解】兩條漸近線的夾角轉化為雙曲漸近線與軸的夾角時要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項漸近線為,B選項漸近線為,C選項漸近線為,D選項漸近線為.所以雙曲線的方程不可能為.故選:C【點睛】本小題主要考查雙曲線的漸近線方程,屬于基礎題.4、D【解析】
利用輔助角公式將正弦函數(shù)化簡,然后通過題目已知條件求出函數(shù)的周期,從而得到,即可求出解析式,然后利用函數(shù)的性質即可判斷.【詳解】,又,即,有且僅有滿足條件;又,則,,函數(shù),對于A,,故A錯誤;對于B,由,解得,故B錯誤;對于C,當時,,故C錯誤;對于D,由,故D正確.故選:D【點睛】本題考查了簡單三角恒等變換以及三角函數(shù)的性質,熟記性質是解題的關鍵,屬于基礎題.5、C【解析】
據(jù)題意可知,是與面積有關的幾何概率,要求落在區(qū)域內(nèi)的概率,只要求、所表示區(qū)域的面積,然后代入概率公式,計算即可得答案.【詳解】根據(jù)題意可得集合所表示的區(qū)域即為如圖所表示:的圓及內(nèi)部的平面區(qū)域,面積為,集合,,表示的平面區(qū)域即為圖中的,,根據(jù)幾何概率的計算公式可得,故選:C.【點睛】本題主要考查了幾何概率的計算,本題是與面積有關的幾何概率模型.解決本題的關鍵是要準確求出兩區(qū)域的面積.6、D【解析】
根據(jù)三角形的面積公式以及余弦定理進行化簡求出的值,然后利用兩角和差的正弦公式進行求解即可.【詳解】解:由,得,∵,∴,即即,則,∵,∴,∴,即,則,故選D.【點睛】本題主要考查解三角形的應用,結合三角形的面積公式以及余弦定理求出的值以及利用兩角和差的正弦公式進行計算是解決本題的關鍵.7、A【解析】
由,得,代入集合B即可得.【詳解】,,,即:,故選:A【點睛】本題考查了集合交集的含義,也考查了元素與集合的關系,屬于基礎題.8、C【解析】
分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.【點睛】本題主要考查了集合的基本運算,難度容易.9、D【解析】
求得點的坐標,由,得出,利用向量的坐標運算得出點的坐標,代入橢圓的方程,可得出關于、、的齊次等式,進而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點.因為點在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【點睛】本題考查橢圓離心率的求解,解答的關鍵就是要得出、、的齊次等式,充分利用點在橢圓上這一條件,圍繞求點的坐標來求解,考查計算能力,屬于中等題.10、B【解析】
根據(jù)函數(shù)的對稱軸以及函數(shù)值,可得結果.【詳解】函數(shù),若,則的圖象關于對稱,又,所以或,所以的值是7或3.故選:B.【點睛】本題考查的是三角函數(shù)的概念及性質和函數(shù)的對稱性問題,屬基礎題11、A【解析】
根據(jù)題意,用表示出與,求出的值即可.【詳解】解:根據(jù)題意,設,則,又,,,故選:A.【點睛】本題主要考查了平面向量基本定理的應用,關鍵是要找到一組合適的基底表示向量,是基礎題.12、B【解析】
先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據(jù)圓與雙曲線的右支沒有公共點,可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點,則直線與直線的距離,∵圓與雙曲線的右支沒有公共點,則,∴,即,又故的取值范圍為,故選:B.【點睛】本題主要考查了直線和雙曲線的位置關系,以及兩平行線間的距離公式,其中解答中根據(jù)圓與雙曲線的右支沒有公共點得出是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)流程圖,運行程序即得.【詳解】第一次運行,;第二次運行,;第三次運行,;第四次運行;所以輸出的S的值是.故答案為:【點睛】本題考查算法流程圖,是基礎題.14、【解析】試題分析:根據(jù)題意,記白球為A,紅球為B,黃球為,則一次取出2只球,基本事件為、、、、、共6種,其中2只球的顏色不同的是、、、、共5種;所以所求的概率是.考點:古典概型概率15、2【解析】
作出可行域,平移基準直線到處,求得的最小值.【詳解】畫出可行域如下圖所示,由圖可知平移基準直線到處時,取得最小值為.故答案為:【點睛】本小題主要考查線性規(guī)劃求最值,考查數(shù)形結合的數(shù)學思想方法,屬于基礎題.16、【解析】
利用交集定義直接求解.【詳解】解:集合奇數(shù),偶數(shù),.故答案為:.【點睛】本題考查交集的求法,考查交集定義等基礎知識,考查運算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2),的最小值為.(3)時,面積取最小值為【解析】
(1),利用三角函數(shù)定義分別表示,且,即可得到關于的解析式;,,則,即可得到的范圍;(2)由(1),若求l的最小值即求的最大值,即可求的最大值,設為,令,則,即可設,利用導函數(shù)判斷函數(shù)的單調(diào)性,即可求得的最大值,進而求解;(3)由題,,則,設,,利用導函數(shù)求得的最大值,即可求得的最小值.【詳解】解:(1),故.因為,所以,,所以,又,,則,所以,所以(2)記,則,設,,則,記,則,令,則,當時,;當時,,所以在上單調(diào)遞增,在上單調(diào)遞減,故當時取最小值,此時,的最小值為.(3)的面積,所以,設,則,設,則,令,,所以當時,;當時,,所以在上單調(diào)遞增,在上單調(diào)遞減,故當,即時,面積取最小值為【點睛】本題考查三角函數(shù)定義的應用,考查利用導函數(shù)求最值,考查運算能力.18、(1)(2)證明見解析【解析】
(1)依題意可得,考慮到,則有再分類討論可得;(2)要證明,即證,即證.利用基本不等式即可得證;【詳解】解:(1)由及,得,考慮到,則有,它可化為或即或前者無解,后者的解集為,綜上,的取值范圍是.(2)要證明,即證,由,得,即證.因為(當且僅當,時取等號).所以成立,故成立.【點睛】本題考查分類討論法解絕對值不等式,基本不等式的應用,屬于中檔題.19、(1)(2)存在,或.【解析】
(1)由得看成到兩定點的和為定值,滿足橢圓定義,用定義可解曲線的方程.(2)先討論斜率不存在情況是否符合題意,當直線的斜率存在時,設直線點斜式方程,由,可得,再直線與橢圓聯(lián)解,利用根的判別式得到關于的一元二次方程求解.【詳解】解:設,由,,可得,即為,由,可得的軌跡是以為焦點,且的橢圓,由,可得,可得曲線的方程為;假設存在過點的直線l符合題意.當直線的斜率不存在,設方程為,可得為短軸的兩個端點,不成立;當直線的斜率存在時,設方程為,由,可得,即,可得,化為,由可得,由在橢圓內(nèi),可得直線與橢圓相交,,則化為,即為,解得,所以存在直線符合題意,且方程為或.【點睛】本題考查求軌跡方程及直線與圓錐曲線位置關系問題.(1)定義法求軌跡方程的思路:應用定義法求軌跡方程的關鍵在于由已知條件推出關于動點的等量關系式,由等量關系結合曲線定義判斷是何種曲線,再設出標準方程,用待定系數(shù)法求解;(2)解決是否存在直線的問題時,可依據(jù)條件尋找適合條件的直線方程,聯(lián)立方程消元得出一元二次方程,利用判別式得出是否有解.20、(1)的值為或.(2)【解析】
(1)分類討論,當時,線段與拋物線沒有公共點,設點在拋物線準線上的射影為,當三點共線時,能取得最小值,利用拋物線的焦半徑公式即可求解;當時,線段與拋物線有公共點,利用兩點間的距離公式即可求解.(2)由題意可得軸且設,則,代入拋物線方程求出,再利用三角形的面積公式即可求解.【詳解】由題,,若線段與拋物線沒有公共點,即時,設點在拋物線準線上的射影為,則三點共線時,的最小值為,此時若線段與拋物線有公共點,即時,則三點共線時,的最小值為:,此時綜上,實數(shù)的值為或.因為,所以軸且設,則,代入拋物線的方程解得于是,所以【點睛】本題考查了拋物線的焦半徑公式、直線與拋物線的位置關系中的面積問題,屬于中檔題.21、(1)(2)證明見解析【解析】
(1)由點可得,由,根據(jù)即可求解;(2)設直線的方程為,聯(lián)立可得,設,由韋達定理可得,再根據(jù)直線的斜率公式求得;由點B與點Q關于原點對稱,可設,可求得,則,即可求證.【詳解】解:(1)由題意可知,,又,得,所以橢圓的方程為(2)證明:設直線的方程為,聯(lián)立,可得,設,則有,因為,所以,又因為點B與點Q關于原點對稱,所以,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024門面施工現(xiàn)場管理及應急預案合同3篇
- 2024年貨物出口合同標的及出口規(guī)格
- 2024年社區(qū)羽毛球館租賃協(xié)議3篇
- 2024汽車租賃公司新能源車輛推廣合同
- 2024年限定版房產(chǎn)市場調(diào)研與營銷策劃服務協(xié)議版B版
- 2024年跨界合作居間協(xié)議書
- 2024年鐵路軌道焊接分包商協(xié)議
- 2025年度餐廳與旅行社聯(lián)合運營美食旅游項目合同3篇
- 2024版鐵路安全協(xié)議書
- 職業(yè)學院工會評優(yōu)評先實施辦法
- 駕駛證學法減分(學法免分)試題和答案(50題完整版)1650
- 《法學概論》課程教學大綱
- 成品油稅收分類編碼
- 福建省廈門市高一上學期期末考試政治試題 Word版含答案
- 山東中醫(yī)藥大學中西醫(yī)臨床(專升本)學士學位考試復習題
- 鐵路貨場平面設計說明書
- 抽象函數(shù)的單調(diào)性
- 2019年血站績效考核標準
- 義務教育語文課程常用字表3500字
- 盤扣架支架計算小程序EXCEL
- 常規(guī)曳引電梯參數(shù)計算書
評論
0/150
提交評論