版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆廣東韶關曲江中考數(shù)學模擬預測題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.1﹣的相反數(shù)是()A.1﹣ B.﹣1 C. D.﹣12.已知圓A的半徑長為4,圓B的半徑長為7,它們的圓心距為d,要使這兩圓沒有公共點,那么d的值可以?。ǎ〢.11; B.6; C.3; D.1.3.如圖,AB為⊙O的直徑,C、D為⊙O上的點,若AC=CD=DB,則cos∠CAD=()A. B. C. D.4.如圖,BD∥AC,BE平分∠ABD,交AC于點E,若∠A=40°,則∠1的度數(shù)為()A.80° B.70° C.60° D.40°5.《孫子算經(jīng)》是中國古代重要的數(shù)學著作,成書于約一千五百年前,其中有首歌謠:今有竿不知其長,量得影長一丈五尺,立一標桿,長一尺五寸,影長五寸,問竿長幾何?意即:有一根竹竿不知道有多長,量出它在太陽下的影子長一丈五尺,同時立一根一尺五寸的小標桿,它的影長五寸(提示:1丈=10尺,1尺=10寸),則竹竿的長為()A.五丈 B.四丈五尺 C.一丈 D.五尺6.下列圖形中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個7.一個幾何體的三視圖如圖所示,根據(jù)圖示的數(shù)據(jù)計算出該幾何體的表面積()A.65π B.90π C.25π D.85π8.小明乘出租車去體育場,有兩條路線可供選擇:路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車速比走路線一時的平均車速能提高80%,因此能比走路線一少用10分鐘到達.若設走路線一時的平均速度為x千米/小時,根據(jù)題意,得A.25x-C.30(1+80%)x-9.如圖,在平面直角坐標系中Rt△ABC的斜邊BC在x軸上,點B坐標為(1,0),AC=2,∠ABC=30°,把Rt△ABC先繞B點順時針旋轉180°,然后再向下平移2個單位,則A點的對應點A′的坐標為()A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)10.如圖,在中,點D、E、F分別在邊、、上,且,.下列四種說法:①四邊形是平行四邊形;②如果,那么四邊形是矩形;③如果平分,那么四邊形是菱形;④如果且,那么四邊形是菱形.其中,正確的有()個A.1 B.2 C.3 D.411.下列各組數(shù)中,互為相反數(shù)的是()A.﹣2與2 B.2與2 C.3與 D.3與312.如圖,四邊形ABCD是⊙O的內接四邊形,⊙O的半徑為6,∠ADC=60°,則劣弧AC的長為()A.2π B.4π C.5π D.6π二、填空題:(本大題共6個小題,每小題4分,共24分.)13.不等式組的解集是__.14.當﹣4≤x≤2時,函數(shù)y=﹣(x+3)2+2的取值范圍為_____________.15.如圖,把△ABC繞點C順時針旋轉得到△A'B'C',此時A′B′⊥AC于D,已知∠A=50°,則∠B′CB的度數(shù)是_____°.16.若函數(shù)y=m-2x17.在△ABC中,AB=1,BC=2,以AC為邊作等邊三角形ACD,連接BD,則線段BD的最大值為_____.18.如圖,將量角器和含30°角的一塊直角三角板緊靠著放在同一平面內,使三角板的0cm刻度線與量角器的0°線在同一直線上,且直徑DC是直角邊BC的兩倍,過點A作量角器圓弧所在圓的切線,切點為E,則點E在量角器上所對應的度數(shù)是____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某校對六至九年級學生圍繞“每天30分鐘的大課間,你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學生進行隨機抽樣調查,從而得到一組數(shù)據(jù).如圖是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計圖,請結合統(tǒng)計圖回答下列問題:該校對多少學生進行了抽樣調查?本次抽樣調查中,最喜歡籃球活動的有多少?占被調查人數(shù)的百分比是多少?若該校九年級共有200名學生,如圖是根據(jù)各年級學生人數(shù)占全校學生總人數(shù)的百分比繪制的扇形統(tǒng)計圖,請估計全校六至九年級學生中最喜歡跳繩活動的人數(shù)約為多少?20.(6分)如圖,在平面直角坐標系中,直線y1=2x+b與坐標軸交于A、B兩點,與雙曲線(x>0)交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,點B的坐標為(0,﹣2).(1)求直線y1=2x+b及雙曲線(x>0)的表達式;(2)當x>0時,直接寫出不等式的解集;(3)直線x=3交直線y1=2x+b于點E,交雙曲線(x>0)于點F,求△CEF的面積.21.(6分)科技改變生活,手機導航極大方便了人們的出行,如圖,小明一家自駕到古鎮(zhèn)C游玩,到達A地后,導航顯示車輛應沿北偏西55°方向行駛4千米至B地,再沿北偏東35°方向行駛一段距離到達古鎮(zhèn)C,小明發(fā)現(xiàn)古鎮(zhèn)C恰好在A地的正北方向,求B、C兩地的距離(結果保留整數(shù))(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)22.(8分)已知:AB為⊙O上一點,如圖,,,BH與⊙O相切于點B,過點C作BH的平行線交AB于點E.(1)求CE的長;(2)延長CE到F,使,連結BF并延長BF交⊙O于點G,求BG的長;(3)在(2)的條件下,連結GC并延長GC交BH于點D,求證:23.(8分)如圖,AB是⊙O的直徑,點C為⊙O上一點,經(jīng)過C作CD⊥AB于點D,CF是⊙O的切線,過點A作AE⊥CF于E,連接AC.(1)求證:AE=AD.(2)若AE=3,CD=4,求AB的長.24.(10分)如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m時,橋洞與水面的最大距離是5m.經(jīng)過討論,同學們得出三種建立平面直角坐標系的方案(如圖),你選擇的方案是(填方案一,方案二,或方案三),則B點坐標是,求出你所選方案中的拋物線的表達式;因為上游水庫泄洪,水面寬度變?yōu)?m,求水面上漲的高度.25.(10分)我們知道,平面內互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,如果兩條數(shù)軸不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么這兩條數(shù)軸構成的是平面斜坐標系,兩條數(shù)軸稱為斜坐標系的坐標軸,公共原點稱為斜坐標系的原點,如圖1,經(jīng)過平面內一點P作坐標軸的平行線PM和PN,分別交x軸和y軸于點M,N.點M、N在x軸和y軸上所對應的數(shù)分別叫做P點的x坐標和y坐標,有序實數(shù)對(x,y)稱為點P的斜坐標,記為P(x,y).(1)如圖2,ω=45°,矩形OABC中的一邊OA在x軸上,BC與y軸交于點D,OA=2,OC=l.①點A、B、C在此斜坐標系內的坐標分別為A,B,C.②設點P(x,y)在經(jīng)過O、B兩點的直線上,則y與x之間滿足的關系為.③設點Q(x,y)在經(jīng)過A、D兩點的直線上,則y與x之間滿足的關系為.(2)若ω=120°,O為坐標原點.①如圖3,圓M與y軸相切原點O,被x軸截得的弦長OA=4,求圓M的半徑及圓心M的斜坐標.②如圖4,圓M的圓心斜坐標為M(2,2),若圓上恰有兩個點到y(tǒng)軸的距離為1,則圓M的半徑r的取值范圍是.26.(12分)某中學為了解八年級學習體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為A、B、C、D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:(1)本次抽樣調查共抽取了多少名學生?(2)求測試結果為C等級的學生數(shù),并補全條形圖;(3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結果為D等級的學生有多少名.27.(12分)某科技開發(fā)公司研制出一種新型產(chǎn)品,每件產(chǎn)品的成本為2500元,銷售單價定為3200元.在該產(chǎn)品的試銷期間,為了促銷,鼓勵商家購買該新型品,公司決定商家一次購買這種新型產(chǎn)品不超過10件時,每件按3200元銷售:若一次購買該種產(chǎn)品超過10件時,每多購買一件,所購買的全部產(chǎn)品的銷售單價均降低5元,但銷售單價均不低于2800元.商家一次購買這種產(chǎn)品多少件時,銷售單價恰好為2800元?設商家一次購買這種產(chǎn)品x件,開發(fā)公司所獲的利潤為y元,求y(元)與x(件)之間的函數(shù)關系式,并寫出自變量x的取值范圍該公司的銷售人員發(fā)現(xiàn):當商家一次購買產(chǎn)品的件數(shù)超過某一數(shù)量時,會出現(xiàn)隨著一次購買的數(shù)量的增多,公司所獲的利潤反而減少這一情況.為使商家一次購買的數(shù)量越多,公司所獲的利潤越大,公司應將最低銷售單價調整為多少元?(其它銷售條件不變)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】
根據(jù)相反數(shù)的的定義解答即可.【題目詳解】根據(jù)a的相反數(shù)為-a即可得,1﹣的相反數(shù)是﹣1.故選B.【題目點撥】本題考查了相反數(shù)的定義,熟知相反數(shù)的定義是解決問題的關鍵.2、D【解題分析】∵圓A的半徑長為4,圓B的半徑長為7,它們的圓心距為d,∴當d>4+7或d<7-4時,這兩個圓沒有公共點,即d>11或d<3,∴上述四個數(shù)中,只有D選項中的1符合要求.故選D.點睛:兩圓沒有公共點,存在兩種情況:(1)兩圓外離,此時圓心距>兩圓半徑的和;(1)兩圓內含,此時圓心距<大圓半徑-小圓半徑.3、D【解題分析】
根據(jù)圓心角,弧,弦的關系定理可以得出===,根據(jù)圓心角和圓周角的關鍵即可求出的度數(shù),進而求出它的余弦值.【題目詳解】解:===,故選D.【題目點撥】本題考查圓心角,弧,弦,圓周角的關系,熟記特殊角的三角函數(shù)值是解題的關鍵.4、B【解題分析】
根據(jù)平行線的性質得到根據(jù)BE平分∠ABD,即可求出∠1的度數(shù).【題目詳解】解:∵BD∥AC,∴∵BE平分∠ABD,∴故選B.【題目點撥】本題考查角平分線的性質和平行線的性質,熟記它們的性質是解題的關鍵.5、B【解題分析】【分析】根據(jù)同一時刻物高與影長成正比可得出結論.【題目詳解】設竹竿的長度為x尺,∵竹竿的影長=一丈五尺=15尺,標桿長=一尺五寸=1.5尺,影長五寸=0.5尺,∴,解得x=45(尺),故選B.【題目點撥】本題考查了相似三角形的應用舉例,熟知同一時刻物髙與影長成正比是解答此題的關鍵.6、B【解題分析】解:第一個圖是軸對稱圖形,又是中心對稱圖形;第二個圖是軸對稱圖形,不是中心對稱圖形;第三個圖是軸對稱圖形,又是中心對稱圖形;第四個圖是軸對稱圖形,不是中心對稱圖形;既是軸對稱圖形,又是中心對稱圖形的有2個.故選B.7、B【解題分析】
根據(jù)三視圖可判斷該幾何體是圓錐,圓錐的高為12,圓錐的底面圓的半徑為5,再利用勾股定理計算出母線長,然后求底面積與側面積的和即可.【題目詳解】由三視圖可知該幾何體是圓錐,圓錐的高為12,圓錐的底面圓的半徑為5,所以圓錐的母線長==13,所以圓錐的表面積=π×52+×2π×5×13=90π.故選B.【題目點撥】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.也考查了三視圖.8、A【解題分析】若設走路線一時的平均速度為x千米/小時,根據(jù)路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車速比走路線一時的平均車速能提高80%,因此能比走路線一少用10分鐘到達可列出方程.解:設走路線一時的平均速度為x千米/小時,25故選A.9、D【解題分析】解:作AD⊥BC,并作出把Rt△ABC先繞B點順時針旋轉180°后所得△A1BC1,如圖所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵點B坐標為(1,0),∴A點的坐標為(4,).∵BD=1,∴BD1=1,∴D1坐標為(﹣2,0),∴A1坐標為(﹣2,﹣).∵再向下平移2個單位,∴A′的坐標為(﹣2,﹣﹣2).故選D.點睛:本題主要考查了直角三角形的性質,勾股定理,旋轉的性質和平移的性質,作出圖形利用旋轉的性質和平移的性質是解答此題的關鍵.10、D【解題分析】
先由兩組對邊分別平行的四邊形為平行四邊形,根據(jù)DE∥CA,DF∥BA,得出AEDF為平行四邊形,得出①正確;當∠BAC=90°,根據(jù)推出的平行四邊形AEDF,利用有一個角為直角的平行四邊形為矩形可得出②正確;若AD平分∠BAC,得到一對角相等,再根據(jù)兩直線平行內錯角相等又得到一對角相等,等量代換可得∠EAD=∠EDA,利用等角對等邊可得一組鄰邊相等,根據(jù)鄰邊相等的平行四邊形為菱形可得出③正確;由AB=AC,AD⊥BC,根據(jù)等腰三角形的三線合一可得AD平分∠BAC,同理可得四邊形AEDF是菱形,④正確,進而得到正確說法的個數(shù).【題目詳解】解:∵DE∥CA,DF∥BA,∴四邊形AEDF是平行四邊形,選項①正確;若∠BAC=90°,∴平行四邊形AEDF為矩形,選項②正確;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四邊形AEDF為菱形,選項③正確;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四邊形AEDF為菱形,選項④正確,則其中正確的個數(shù)有4個.故選D.【題目點撥】此題考查了平行四邊形的定義,菱形、矩形的判定,涉及的知識有:平行線的性質,角平分線的定義,以及等腰三角形的判定與性質,熟練掌握平行四邊形、矩形及菱形的判定與性質是解本題的關鍵.11、A【解題分析】
根據(jù)只有符號不同的兩數(shù)互為相反數(shù),可直接判斷.【題目詳解】-2與2互為相反數(shù),故正確;2與2相等,符號相同,故不是相反數(shù);3與互為倒數(shù),故不正確;3與3相同,故不是相反數(shù).故選:A.【題目點撥】此題主要考查了相反數(shù),關鍵是觀察特點是否只有符號不同,比較簡單.12、B【解題分析】
連接OA、OC,然后根據(jù)圓周角定理求得∠AOC的度數(shù),最后根據(jù)弧長公式求解.【題目詳解】連接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,則劣弧AC的長為:=4π.故選B.【題目點撥】本題考查了弧長的計算以及圓周角定理,解答本題的關鍵是掌握弧長公式.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2≤x<1【解題分析】
分別解兩個不等式得到x<1和x≥2,然后根據(jù)大小小大中間找確定不等數(shù)組的解集.【題目詳解】解:,解①得x<1,解②得x≥2,所以不等式組的解集為2≤x<1.故答案為2≤x<1.【題目點撥】本題考查了解一元一次不等式組:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集.解集的規(guī)律:同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到.14、-23≤y≤2【解題分析】
先根據(jù)a=-1判斷出拋物線的開口向下,故有最大值,可知對稱軸x=-3,再根據(jù)-4≤x≤2,可知當x=-3時y最大,把x=2時y最小代入即可得出結論.【題目詳解】解:∵a=-1,
∴拋物線的開口向下,故有最大值,
∵對稱軸x=-3,
∴當x=-3時y最大為2,
當x=2時y最小為-23,
∴函數(shù)y的取值范圍為-23≤y≤2,故答案為:-23≤y≤2.【題目點撥】本題考查二次函數(shù)的性質,掌握拋物線的開口方向、對稱軸以及增減性是解題關鍵.15、1【解題分析】
由旋轉的性質可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性質可求∠ACA'=1°=∠B′CB.【題目詳解】解:∵把△ABC繞點C順時針旋轉得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案為:1.【題目點撥】本題考查了旋轉的性質,熟練運用旋轉的性質是本題的關鍵.16、m>2【解題分析】試題分析:有函數(shù)y=m考點:反比例函數(shù)的性質.17、3【解題分析】
以AB為邊作等邊△ABE,由題意可證△AEC≌△ABD,可得BD=CE,根據(jù)三角形三邊關系,可求EC的最大值,即可求BD的最大值.【題目詳解】如圖:以AB為邊作等邊△ABE,
,
∵△ACD,△ABE是等邊三角形,
∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,
∴∠EAC=∠BAD,且AE=AB,AD=AC,
∴△DAB≌△CAE(SAS)
∴BD=CE,
若點E,點B,點C不共線時,EC<BC+BE;
若點E,點B,點C共線時,EC=BC+BE.
∴EC≤BC+BE=3,
∴EC的最大值為3,即BD的最大值為3.
故答案是:3【題目點撥】考查了旋轉的性質,等邊三角形的性質,全等三角形的判定和性質,以及三角形的三邊關系,恰當添加輔助線構造全等三角形是本題的關鍵.18、60.【解題分析】
首先設半圓的圓心為O,連接OE,OA,由題意易得AC是線段OB的垂直平分線,即可求得∠AOC=∠ABC=60°,又由AE是切線,易證得Rt△AOE≌Rt△AOC,繼而求得∠AOE的度數(shù),則可求得答案.【題目詳解】設半圓的圓心為O,連接OE,OA,∵CD=2OC=2BC,∴OC=BC,∵∠ACB=90°,即AC⊥OB,∴OA=BA,∴∠AOC=∠ABC,∵∠BAC=30°,∴∠AOC=∠ABC=60°,∵AE是切線,∴∠AEO=90°,∴∠AEO=∠ACO=90°,∵在Rt△AOE和Rt△AOC中,,∴Rt△AOE≌Rt△AOC(HL),∴∠AOE=∠AOC=60°,∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,∴點E所對應的量角器上的刻度數(shù)是60°,故答案為:60.【題目點撥】本題考查了切線的性質、全等三角形的判定與性質以及垂直平分線的性質,解題的關鍵是掌握輔助線的作法,注意掌握數(shù)形結合思想的應用.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)50(2)36%(3)160【解題分析】
(1)根據(jù)條形圖的意義,將各組人數(shù)依次相加即可得到答案;(2)根據(jù)條形圖可直接得到最喜歡籃球活動的人數(shù),除以(1)中的調查總人數(shù)即可得出其所占的百分比;(3)用樣本估計總體,先求出九年級占全??側藬?shù)的百分比,然后求出全校的總人數(shù);再根據(jù)最喜歡跳繩活動的學生所占的百分比,繼而可估計出全校學生中最喜歡跳繩活動的人數(shù).【題目詳解】(1)該校對名學生進行了抽樣調查.本次調查中,最喜歡籃球活動的有人,,∴最喜歡籃球活動的人數(shù)占被調查人數(shù)的.(3),人,人.答:估計全校學生中最喜歡跳繩活動的人數(shù)約為人.【題目點撥】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖中各部分占總體的百分比之和為1,直接反映部分占總體的百分比大?。?0、(1)直線解析式為y1=2x﹣2,雙曲線的表達式為y2=(x>0);(2)0<x<2;(3)【解題分析】
(1)將點B的代入直線y1=2x+b,可得b,則可以求得直線解析式;令y=0可得A點坐標為(1,0),又因為OA=AD,則D點坐標為(2,0),把x=2代入直線解析式,可得y=2,從而得到點C的坐標為(2,2),在把(2,2)代入雙曲線y2=,可得k=4,則雙曲線的表達式為y2=(x>0).(2)由x的取值范圍,結合圖像可求得答案.(3)把x=3代入y2函數(shù),可得y=;把x=3代入y1函數(shù),可得y=4,從而得到EF,由三角形的面積公式可得S△CEF=.【題目詳解】解:(1)將點B的坐標(0,﹣2)代入直線y1=2x+b,可得﹣2=b,∴直線解析式為y1=2x﹣2,令y=0,則x=1,∴A(1,0),∵OA=AD,∴D(2,0),把x=2代入y1=2x﹣2,可得y=2,∴點C的坐標為(2,2),把(2,2)代入雙曲線y2=,可得k=2×2=4,∴雙曲線的表達式為y2=(x>0);(2)當x>0時,不等式>2x+b的解集為0<x<2;(3)把x=3代入y2=,可得y=;把x=3代入y1=2x﹣2,可得y=4,∴EF=4﹣=,∴S△CEF=××(3﹣2)=,∴△CEF的面積為.【題目點撥】本題考察了一次函數(shù)和雙曲線例函數(shù)的綜合;熟練掌握由點求解析式是解題的關鍵;能夠結合圖形及三角形面積公式是解題的關鍵.21、B、C兩地的距離大約是6千米.【解題分析】
過B作BD⊥AC于點D,在直角△ABD中利用三角函數(shù)求得BD的長,然后在直角△BCD中利用三角函數(shù)求得BC的長.【題目詳解】解:過B作于點D.在中,千米,中,,千米,千米.答:B、C兩地的距離大約是6千米.【題目點撥】此題考查了方向角問題.此題難度適中,解此題的關鍵是將方向角問題轉化為解直角三角形的知識,利用三角函數(shù)的知識求解.22、(1)CE=4;(2)BG=8;(3)證明見解析.【解題分析】
(1)只要證明△ABC∽△CBE,可得,由此即可解決問題;
(2)連接AG,只要證明△ABG∽△FBE,可得,由BE==4,再求出BF,即可解決問題;
(3)通過計算首先證明CF=FG,推出∠FCG=∠FGC,由CF∥BD,推出∠GCF=∠BDG,推出∠BDG=∠BGD即可證明.【題目詳解】解:(1)∵BH與⊙O相切于點B,∴AB⊥BH,∵BH∥CE,∴CE⊥AB,∵AB是直徑,∴∠CEB=∠ACB=90°,∵∠CBE=∠ABC,∴△ABC∽△CBE,∴,∵AC=,∴CE=4.(2)連接AG.∵∠FEB=∠AGB=90°,∠EBF=∠ABG,∴△ABG∽△FBE,∴,∵BE==4,∴BF=,∴,∴BG=8.(3)易知CF=4+=5,∴GF=BG﹣BF=5,∴CF=GF,∴∠FCG=∠FGC,∵CF∥BD,∴∠GCF=∠BDG,∴∠BDG=∠BGD,∴BG=BD.【題目點撥】本題考查的是切線的性質、相似三角形的判定和性質、勾股定理的應用,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.23、(1)證明見解析(2)【解題分析】
(1)連接OC,根據(jù)垂直定義和切線性質定理證出△CAE≌△CAD(AAS),得AE=AD;(2)連接CB,由(1)得AD=AE=3,根據(jù)勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.【題目詳解】(1)證明:連接OC,如圖所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圓O的切線,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:連接CB,如圖所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根據(jù)勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB為直徑,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【題目點撥】本題考核知識點:切線性質,銳角三角函數(shù)的應用.解題關鍵點:由全等三角形性質得到線段相等,根據(jù)直角三角形性質得到相應等式.24、(1)方案1;B(5,0);;(2)3.2m.【解題分析】試題分析:(1)根據(jù)拋物線在坐標系的位置,可用待定系數(shù)法求拋物線的解析式.(2)把x=3代入拋物線的解析式,即可得到結論.試題解析:解:方案1:(1)點B的坐標為(5,0),設拋物線的解析式為:.由題意可以得到拋物線的頂點為(0,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入,解得:=3.2,∴水面上漲的高度為3.2m.方案2:(1)點B的坐標為(10,0).設拋物線的解析式為:.由題意可以得到拋物線的頂點為(5,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=3.2,∴水面上漲的高度為3.2m.方案3:(1)點B的坐標為(5,),由題意可以得到拋物線的頂點為(0,0).設拋物線的解析式為:,把點B的坐標(5,),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=,∴水面上漲的高度為3.2m.25、(1)①(2,0),(1,),(﹣1,);②y=x;③y=x,y=﹣x+;(2)①半徑為4,M(,);②﹣1<r<+1.【解題分析】
(1)①如圖2-1中,作BE∥OD交OA于E,CF∥OD交x軸于F.求出OE、OF、CF、OD、BE即可解決問題;②如圖2-2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行線分線段成比例定理即可解決問題;③如圖3-3中,作QM∥OA交OD于M.利用平行線分線段成比例定理即可解決問題;(2)①如圖3中,作MF⊥OA于F,作MN∥y軸交OA于N.解直角三角形即可解決問題;②如圖4中,連接OM,作MK∥x軸交y軸于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1時,⊙M的半徑即可解決問題.【題目詳解】(1)①如圖2﹣1中,作BE∥OD交OA于E,CF∥OD交x軸于F,由題意OC=CD=1,OA=BC=2,∴BD=OE=1,OD=CF=BE=,∴A(2,0),B(1,),C(﹣1,),故答案為(2,0),(1,),(﹣1,);②如圖2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M,∵OD∥BE,OD∥PM,∴BE∥PM,∴=,∴,∴y=x;③如圖2﹣3中,作QM∥OA交OD于M,則有,∴,∴y=﹣x+,故答案為y=x,y=﹣x+;(2)①如圖3中,作MF⊥OA于F,作MN∥y軸交OA于N,∵ω=120°,OM⊥y軸,∴∠MOA=30°,∵MF⊥OA,OA=4,∴OF=FA=2,∴FM=2,OM=2FM=4,∵MN∥y軸,∴MN⊥OM,∴MN=,ON=2MN=,∴M(,);②如圖4中,連接OM,作MK∥x軸交y軸于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x軸,ω=120°,∴∠MKO=60°,∵MK=OK=2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度市政基礎設施建設承包合同范本4篇
- 2025年度智能工廠財務共享服務中心定制解決方案合同3篇
- 2025年度美食節(jié)攤位租賃及美食文化交流合同4篇
- 二零二五年度地下空間開發(fā)泥水工程勞務分包合同4篇
- 二零二五版醫(yī)療信息化建設與維護服務合同4篇
- 2025年度專業(yè)實驗室日常清潔與消毒服務合同2篇
- 2025年度車輛維修企業(yè)知識產(chǎn)權保護合同4篇
- 二零二五版泥工施工信息化管理合同4篇
- 2025年度出借資金募集與投放服務合同4篇
- 2025年度打印機遠程診斷與快速響應服務合同范本4篇
- 無人化農(nóng)場項目可行性研究報告
- 《如何存款最合算》課件
- 社區(qū)團支部工作計劃
- 拖欠工程款上訪信范文
- 2024屆上海市金山區(qū)高三下學期二模英語試題(原卷版)
- 學生春節(jié)安全教育
- 《wifi協(xié)議文庫》課件
- 《好東西》:女作者電影的話語建構與烏托邦想象
- 教培行業(yè)研究系列(七):出國考培的再研究供需變化的新趨勢
- GB/T 44895-2024市場和社會調查調查問卷編制指南
- 道醫(yī)館可行性報告
評論
0/150
提交評論