![四川省成都市天府第七中學2024屆中考數(shù)學五模試卷含解析_第1頁](http://file4.renrendoc.com/view10/M01/2B/0B/wKhkGWWHqoOAfKlmAAHr_Poi0zU318.jpg)
![四川省成都市天府第七中學2024屆中考數(shù)學五模試卷含解析_第2頁](http://file4.renrendoc.com/view10/M01/2B/0B/wKhkGWWHqoOAfKlmAAHr_Poi0zU3182.jpg)
![四川省成都市天府第七中學2024屆中考數(shù)學五模試卷含解析_第3頁](http://file4.renrendoc.com/view10/M01/2B/0B/wKhkGWWHqoOAfKlmAAHr_Poi0zU3183.jpg)
![四川省成都市天府第七中學2024屆中考數(shù)學五模試卷含解析_第4頁](http://file4.renrendoc.com/view10/M01/2B/0B/wKhkGWWHqoOAfKlmAAHr_Poi0zU3184.jpg)
![四川省成都市天府第七中學2024屆中考數(shù)學五模試卷含解析_第5頁](http://file4.renrendoc.com/view10/M01/2B/0B/wKhkGWWHqoOAfKlmAAHr_Poi0zU3185.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
四川省成都市天府第七中學2024學年中考數(shù)學五模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,是白球的概率為(
)A. B. C. D.2.如圖1,在△ABC中,D、E分別是AB、AC的中點,將△ADE沿線段DE向下折疊,得到圖1.下列關于圖1的四個結(jié)論中,不一定成立的是()A.點A落在BC邊的中點 B.∠B+∠1+∠C=180°C.△DBA是等腰三角形 D.DE∥BC3.某市初中學業(yè)水平實驗操作考試,要求每名學生從物理,化學、生物三個學科中隨機抽取一科參加測試,小華和小強都抽到物理學科的概率是()A. B. C. D.4.如圖,⊙O是△ABC的外接圓,∠B=60°,⊙O的半徑為4,則AC的長等于()A.4 B.6 C.2 D.85.若關于x的一元二次方程x2-2x-k=0沒有實數(shù)根,則k的取值范圍是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-16.如圖的立體圖形,從左面看可能是()A. B.C. D.7.下列式子成立的有()個①﹣的倒數(shù)是﹣2②(﹣2a2)3=﹣8a5③()=﹣2④方程x2﹣3x+1=0有兩個不等的實數(shù)根A.1 B.2 C.3 D.48.如圖,△ABC中,AB=5,BC=3,AC=4,以點C為圓心的圓與AB相切,則⊙C的半徑為()A.2.3 B.2.4 C.2.5 D.2.69.數(shù)軸上有A,B,C,D四個點,其中絕對值大于2的點是()A.點A B.點B C.點C D.點D10.下列各點中,在二次函數(shù)的圖象上的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.一組“數(shù)值轉(zhuǎn)換機”按下面的程序計算,如果輸入的數(shù)是36,則輸出的結(jié)果為106,要使輸出的結(jié)果為127,則輸入的最小正整數(shù)是__________.12.如圖,已知,點為邊中點,點在線段上運動,點在線段上運動,連接,則周長的最小值為______.13.已知△ABC中,BC=4,AB=2AC,則△ABC面積的最大值為_______.14.化簡的結(jié)果為_____.15.如果點P1(2,y1)、P2(3,y2)在拋物線上,那么y1______y2.(填“>”,“<”或“=”).16.如圖,在正方形ABCD中,等邊三角形AEF的頂點E,F(xiàn)分別在邊BC和CD上,則∠AEB=__________.17.如圖,在正方形ABCD中,O是對角線AC、BD的交點,過O點作OE⊥OF,OE、OF分別交AB、BC于點E、點F,AE=3,F(xiàn)C=2,則EF的長為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在三角形ABC中,AB=6,AC=BC=5,以BC為直徑作⊙O交AB于點D,交AC于點G,直線DF是⊙O的切線,D為切點,交CB的延長線于點E.(1)求證:DF⊥AC;(2)求tan∠E的值.19.(5分)如圖,在一個平臺遠處有一座古塔,小明在平臺底部的點C處測得古塔頂部B的仰角為60°,在平臺上的點E處測得古塔頂部的仰角為30°.已知平臺的縱截面為矩形DCFE,DE=2米,DC=20米,求古塔AB的高(結(jié)果保留根號)20.(8分)如圖,AB是⊙O的直徑,CD切⊙O于點D,且BD∥OC,連接AC.(1)求證:AC是⊙O的切線;(2)若AB=OC=4,求圖中陰影部分的面積(結(jié)果保留根號和π)21.(10分)某快餐店試銷某種套餐,試銷一段時間后發(fā)現(xiàn),每份套餐的成本為5元,該店每天固定支出費用為600元(不含套餐成本).若每份套餐售價不超過10元,每天可銷售400份;若每份套餐售價超過10元,每提高1元,每天的銷售量就減少40份.為了便于結(jié)算,每份套餐的售價(元)取整數(shù),用(元)表示該店每天的利潤.若每份套餐售價不超過10元.①試寫出與的函數(shù)關系式;②若要使該店每天的利潤不少于800元,則每份套餐的售價應不低于多少元?該店把每份套餐的售價提高到10元以上,每天的利潤能否達到1560元?若能,求出每份套餐的售價應定為多少元時,既能保證利潤又能吸引顧客?若不能,請說明理由.22.(10分)如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF,求證:AF=DC;若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.23.(12分)小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關.第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).如果小明第一題不使用“求助”,那么小明答對第一道題的概率是.如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關的概率.從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)24.(14分)如圖1,在四邊形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中點,P是AB上的任意一點,連接PE,將PE繞點P逆時針旋轉(zhuǎn)90°得到PQ.(1)如圖2,過A點,D點作BC的垂線,垂足分別為M,N,求sinB的值;(2)若P是AB的中點,求點E所經(jīng)過的路徑弧EQ的長(結(jié)果保留π);(3)若點Q落在AB或AD邊所在直線上,請直接寫出BP的長.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解題分析】
一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,共有10種等可能的結(jié)果,其中摸出白球的所有等可能結(jié)果共有2種,根據(jù)概率公式即可得出答案.【題目詳解】根據(jù)題意:從袋中任意摸出一個球,是白球的概率為==.故答案為D【題目點撥】此題主要考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.2、A【解題分析】
根據(jù)折疊的性質(zhì)明確對應關系,易得∠A=∠1,DE是△ABC的中位線,所以易得B、D答案正確,D是AB中點,所以DB=DA,故C正確.【題目詳解】根據(jù)題意可知DE是三角形ABC的中位線,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A錯,BA≠CA.故選A.【題目點撥】主要考查了三角形的內(nèi)角和外角之間的關系以及等腰三角形的性質(zhì).還涉及到翻折變換以及中位線定理的運用.(1)三角形的外角等于與它不相鄰的兩個內(nèi)角和.(1)三角形的內(nèi)角和是180度.求角的度數(shù)常常要用到“三角形的內(nèi)角和是180°這一隱含的條件.通過折疊變換考查正多邊形的有關知識,及學生的邏輯思維能力.解答此類題最好動手操作.3、A【解題分析】
作出樹狀圖即可解題.【題目詳解】解:如下圖所示一共有9中可能,符合題意的有1種,故小華和小強都抽到物理學科的概率是,故選A.【題目點撥】本題考查了用樹狀圖求概率,屬于簡單題,會畫樹狀圖是解題關鍵.4、A【解題分析】
解:連接OA,OC,過點O作OD⊥AC于點D,∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=OC=2,∴AC=2CD=4.故選A.【題目點撥】本題考查三角形的外接圓;勾股定理;圓周角定理;垂徑定理.5、C【解題分析】試題分析:由題意可得根的判別式,即可得到關于k的不等式,解出即可.由題意得,解得故選C.考點:一元二次方程的根的判別式點評:解答本題的關鍵是熟練掌握一元二次方程,當時,方程有兩個不相等實數(shù)根;當時,方程的兩個相等的實數(shù)根;當時,方程沒有實數(shù)根.6、A【解題分析】
根據(jù)三視圖的性質(zhì)即可解題.【題目詳解】解:根據(jù)三視圖的概念可知,該立體圖形是三棱柱,左視圖應為三角形,且直角應該在左下角,故選A.【題目點撥】本題考查了三視圖的識別,屬于簡單題,熟悉三視圖的概念是解題關鍵.7、B【解題分析】
根據(jù)倒數(shù)的定義,冪的乘方、二次根式的混合運算法則以及根的判別式進行判斷.【題目詳解】解:①﹣的倒數(shù)是﹣2,故正確;②(﹣2a2)3=﹣8a6,故錯誤;③(-)=﹣2,故錯誤;④因為△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有兩個不等的實數(shù)根,故正確.故選B.【題目點撥】考查了倒數(shù)的定義,冪的乘方、二次根式的混合運算法則以及根的判別式,屬于比較基礎的題目,熟記計算法則即可解答.8、B【解題分析】試題分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如圖:設切點為D,連接CD,∵AB是⊙C的切線,∴CD⊥AB,∵S△ABC=AC×BC=AB×CD,∴AC×BC=AB×CD,即CD===,∴⊙C的半徑為,故選B.考點:圓的切線的性質(zhì);勾股定理.9、A【解題分析】
根據(jù)絕對值的含義和求法,判斷出絕對值等于2的數(shù)是﹣2和2,據(jù)此判斷出絕對值等于2的點是哪個點即可.【題目詳解】解:∵絕對值等于2的數(shù)是﹣2和2,∴絕對值等于2的點是點A.故選A.【題目點撥】此題主要考查了絕對值的含義和求法,要熟練掌握,解答此題的關鍵要明確:①互為相反數(shù)的兩個數(shù)絕對值相等;②絕對值等于一個正數(shù)的數(shù)有兩個,絕對值等于0的數(shù)有一個,沒有絕對值等于負數(shù)的數(shù).③有理數(shù)的絕對值都是非負數(shù).10、D【解題分析】
將各選項的點逐一代入即可判斷.【題目詳解】解:當x=1時,y=-1,故點不在二次函數(shù)的圖象;當x=2時,y=-4,故點和點不在二次函數(shù)的圖象;當x=-2時,y=-4,故點在二次函數(shù)的圖象;故答案為:D.【題目點撥】本題考查了判斷一個點是否在二次函數(shù)圖象上,解題的關鍵是將點代入函數(shù)解析式.二、填空題(共7小題,每小題3分,滿分21分)11、15【解題分析】
分析:設輸出結(jié)果為y,觀察圖形我們可以得出x和y的關系式為:,將y的值代入即可求得x的值.詳解:∵當y=127時,解得:x=43;當y=43時,解得:x=15;當y=15時,解得不符合條件.則輸入的最小正整數(shù)是15.故答案為15.點睛:考查一元一次方程的應用,熟練掌握一元一次方程的應用是解題的關鍵.12、【解題分析】
作梯形ABCD關于AB的軸對稱圖形,將BC'繞點C'逆時針旋轉(zhuǎn)120°,則有GE'=FE',P與Q是關于AB的對稱點,當點F'、G、P三點在一條直線上時,△FEP的周長最小即為F'G+GE'+E'P,此時點P與點M重合,F(xiàn)'M為所求長度;過點F'作F'H⊥BC',M是BC中點,則Q是BC'中點,由已知條件∠B=90°,∠C=60°,BC=2AD=4,可得C'Q=F'C'=2,∠F'C'H=60°,所以F'H=,HC'=1,在Rt△MF'H中,即可求得F'M.【題目詳解】作梯形ABCD關于AB的軸對稱圖形,作F關于AB的對稱點G,P關于AB的對稱點Q,∴PF=GQ,將BC'繞點C'逆時針旋轉(zhuǎn)120°,Q點關于C'G的對應點為F',∴GF'=GQ,設F'M交AB于點E',∵F關于AB的對稱點為G,∴GE'=FE',
∴當點F'、G、P三點在一條直線上時,△FEP的周長最小即為F'G+GE'+E'P,此時點P與點M重合,∴F'M為所求長度;
過點F'作F'H⊥BC',
∵M是BC中點,
∴Q是BC'中點,
∵∠B=90°,∠C=60°,BC=2AD=4,
∴C'Q=F'C'=2,∠F'C'H=60°,
∴F'H=,HC'=1,∴MH=7,
在Rt△MF'H中,F(xiàn)'M;
∴△FEP的周長最小值為.
故答案為:.【題目點撥】本題考查了動點問題的最短距離,涉及的知識點有:勾股定理,含30度角直角三角形的性質(zhì),能夠通過軸對稱和旋轉(zhuǎn),將三角形的三條邊轉(zhuǎn)化為線段的長是解題的關鍵.13、【解題分析】
設AC=x,則AB=2x,根據(jù)面積公式得S△ABC=2x,由余弦定理求得cosC代入化簡S△ABC=,由三角形三邊關系求得,由二次函數(shù)的性質(zhì)求得S△ABC取得最大值.【題目詳解】設AC=x,則AB=2x,根據(jù)面積公式得:c==2x.由余弦定理可得:,∴S△ABC=2x=2x=由三角形三邊關系有,解得,故當時,取得最大值,
故答案為:.【題目點撥】本題主要考查了余弦定理和面積公式在解三角形中的應用,考查了二次函數(shù)的性質(zhì),考查了計算能力,當涉及最值問題時,可考慮用函數(shù)的單調(diào)性和定義域等問題,屬于中檔題.14、+1【解題分析】
利用積的乘方得到原式=[(﹣1)(+1)]2017?(+1),然后利用平方差公式計算.【題目詳解】原式=[(﹣1)(+1)]2017?(+1)=(2﹣1)2017?(+1)=+1.故答案為:+1.【題目點撥】本題考查了二次根式的混合運算,在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當?shù)慕忸}途徑,往往能事半功倍.15、>【解題分析】分析:首先求得拋物線y=﹣x2+2x的對稱軸是x=1,利用二次函數(shù)的性質(zhì),點M、N在對稱軸的右側(cè),y隨著x的增大而減小,得出答案即可.詳解:拋物線y=﹣x2+2x的對稱軸是x=﹣=1.∵a=﹣1<0,拋物線開口向下,1<2<3,∴y1>y2.故答案為>.點睛:本題考查了二次函數(shù)圖象上點的坐標特征,二次函數(shù)的性質(zhì),求得對稱軸,掌握二次函數(shù)圖象的性質(zhì)解決問題.16、75【解題分析】因為△AEF是等邊三角形,所以∠EAF=60°,AE=AF,因為四邊形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,所以∠BAE=15°,所以∠AEB=90°-15°=75°.故答案為75.17、【解題分析】
由△BOF≌△AOE,得到BE=FC=2,在直角△BEF中,從而求得EF的值.【題目詳解】∵正方形ABCD中,OB=OC,∠BOC=∠EOF=90°,∴∠EOB=∠FOC,在△BOE和△COF中,,∴△BOE≌△COF(ASA)∴BE=FC=2,同理BF=AE=3,在Rt△BEF中,BF=3,BE=2,∴EF==.故答案為【題目點撥】本題考查了正方形的性質(zhì)、三角形全等的性質(zhì)和判定、勾股定理,在四邊形中常利用三角形全等的性質(zhì)和勾股定理計算線段的長.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)tan∠CBG=.【解題分析】
(1)連接OD,CD,根據(jù)圓周角定理得∠BDC=90°,由等腰三角形三線合一的性質(zhì)得D為AB的中點,所以OD是中位線,由三角形中位線性質(zhì)得:OD∥AC,根據(jù)切線的性質(zhì)可得結(jié)論;
(2)如圖,連接BG,先證明EF∥BG,則∠CBG=∠E,求∠CBG的正切即可.【題目詳解】解:(1)證明:連接OD,CD,∵BC是⊙O的直徑,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,∵OB=OC,∴OD是△ABC的中位線∴OD∥AC,∵DF為⊙O的切線,∴OD⊥DF,∴DF⊥AC;(2)解:如圖,連接BG,∵BC是⊙O的直徑,∴∠BGC=90°,∵∠EFC=90°=∠BGC,∴EF∥BG,∴∠CBG=∠E,Rt△BDC中,∵BD=3,BC=5,∴CD=4,∵S△ABC=,即6×4=5BG,∴BG=,由勾股定理得:CG=,∴tan∠CBG=tan∠E=.【題目點撥】本題考查了切線的性質(zhì)、等腰三角形的性質(zhì)、平行線的判定和性質(zhì)及勾股定理的應用;把所求角的正切進行轉(zhuǎn)移是基本思路,利用面積法求BG的長是解決本題的難點.19、古塔AB的高為(10+2)米.【解題分析】試題分析:延長EF交AB于點G.利用AB表示出EG,AC.讓EG-AC=1即可求得AB長.試題解析:如圖,延長EF交AB于點G.設AB=x米,則BG=AB﹣2=(x﹣2)米.則EG=(AB﹣2)÷tan∠BEG=(x﹣2),CA=AB÷tan∠ACB=x.則CD=EG﹣AC=(x﹣2)﹣x=1.解可得:x=10+2.答:古塔AB的高為(10+2)米.20、(1)證明見解析;(2);【解題分析】
(1)連接OD,先根據(jù)切線的性質(zhì)得到∠CDO=90°,再根據(jù)平行線的性質(zhì)得到∠AOC=∠OBD,∠COD=∠ODB,又因為OB=OD,所以∠OBD=∠ODB,即∠AOC=∠COD,再根據(jù)全等三角形的判定與性質(zhì)得到∠CAO=∠CDO=90°,根據(jù)切線的判定即可得證;(2)因為AB=OC=4,OB=OD,Rt△ODC與Rt△OAC是含30°的直角三角形,從而得到∠DOB=60°,即△BOD為等邊三角形,再用扇形的面積減去△BOD的面積即可.【題目詳解】(1)證明:連接OD,∵CD與圓O相切,∴OD⊥CD,∴∠CDO=90°,∵BD∥OC,∴∠AOC=∠OBD,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠AOC=∠COD,在△AOC和△DOC中,,∴△AOC≌△EOC(SAS),∴∠CAO=∠CDO=90°,則AC與圓O相切;(2)∵AB=OC=4,OB=OD,∴Rt△ODC與Rt△OAC是含30°的直角三角形,∴∠DOC=∠COA=60°,∴∠DOB=60°,∴△BOD為等邊三角形,圖中陰影部分的面積=扇形DOB的面積﹣△DOB的面積,=.【題目點撥】本題主要考查切線的判定與性質(zhì),全等三角形的判定與性質(zhì),含30°角的直角三角形的性質(zhì),扇形的面積公式等,難度中等,屬于綜合題,解此題的關鍵在于熟練掌握其知識點.21、(1)①y=400x﹣1.(5<x≤10);②9元或10元;(2)能,11元.【解題分析】
(1)、根據(jù)利潤=(售價-進價)×數(shù)量-固定支出列出函數(shù)表達式;(2)、根據(jù)題意得出不等式,從而得出答案;(2)、根據(jù)題意得出函數(shù)關系式,然后將y=1560代入函數(shù)解析式,從而求出x的值得出答案.【題目詳解】解:(1)①y=400(x﹣5)﹣2.(5<x≤10),②依題意得:400(x﹣5)﹣2≥800,解得:x≥8.5,∵5<x≤10,且每份套餐的售價x(元)取整數(shù),∴每份套餐的售價應不低于9元.(2)依題意可知:每份套餐售價提高到10元以上時,y=(x﹣5)[400﹣40(x﹣10)]﹣2,當y=1560時,(x﹣5)[400﹣40(x﹣10)]﹣2=1560,解得:x1=11,x2=14,為了保證凈收入又能吸引顧客,應取x1=11,即x2=14不符合題意.故該套餐售價應定為11元.【題目點撥】本題主要考查的是一次函數(shù)和二次函數(shù)的實際應用問題,屬于中等難度的題型.理解題意,列出關系式是解決這個問題的關鍵.22、(1)見解析(2)見解析【解題分析】
(1)根據(jù)AAS證△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四邊形ADCF是平行四邊形,根據(jù)直角三角形斜邊上中線性質(zhì)得出CD=AD,根據(jù)菱形的判定推出即可.【題目詳解】解:(1)證明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中點,AD是BC邊上的中線,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四邊形ADCF是菱形,證明如下:∵AF∥BC,AF=DC,∴四邊形ADCF是平行四邊形.∵AC⊥AB,AD是斜邊BC的中線,∴AD=DC.∴平行四邊形ADCF是菱形23、(1);(2);(3)第一題.【解題分析】
(1)由第一道單選題有3個選項,直接利用概率公式求解即可求得答案;(2)畫出樹狀圖,再由樹狀圖求得所有等可能的結(jié)果與小明順利通關的情況,繼而利用概率公式即可求得答案;(3)由如果在第一題使用“求助”小明順利通關的概率為:;如果在第二題使用“求助”小明順利通關的概率為:;即可求得答案.【題目詳解】(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率=;故答案為;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國差壓式孔板流量計行業(yè)投資前景及策略咨詢研究報告
- 2025年小檔后軸項目可行性研究報告
- 2025年商務飲水機項目可行性研究報告
- 2025年冶金工業(yè)托輪鏈項目可行性研究報告
- 2025至2030年中國面包墊紙數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國錐柄鉆頭數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年聚氯乙烯絕緣和護套控制電纜項目投資價值分析報告
- 2025至2030年中國解熱止痛散數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國膠柄電烙鐵數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國硫酸鋯數(shù)據(jù)監(jiān)測研究報告
- 2024-2025學年初中七年級上學期數(shù)學期末綜合卷(人教版)含答案
- 體育活動策劃與組織課件
- 公司違規(guī)違紀連帶處罰制度模版(2篇)
- 2025屆高考物理二輪總復習第一編專題2能量與動量第1講動能定理機械能守恒定律功能關系的應用課件
- 內(nèi)業(yè)資料承包合同個人與公司的承包合同
- 2024年計算機二級WPS考試題庫(共380題含答案)
- 【履職清單】2024版安全生產(chǎn)責任體系重點崗位履職清單
- 跨學科實踐活動10調(diào)查我國航天科技領域中新型材料新型能源的應用課件九年級化學人教版(2024)下冊
- 2022年全國醫(yī)學博士英語統(tǒng)一考試試題
- 學校工作總結(jié)和存在的不足及整改措施
- Petrel中文操作手冊(1-3)
評論
0/150
提交評論