湖南省德山鄉(xiāng)龍?zhí)垛种袑W(xué)2024屆中考四模數(shù)學(xué)試題含解析_第1頁(yè)
湖南省德山鄉(xiāng)龍?zhí)垛种袑W(xué)2024屆中考四模數(shù)學(xué)試題含解析_第2頁(yè)
湖南省德山鄉(xiāng)龍?zhí)垛种袑W(xué)2024屆中考四模數(shù)學(xué)試題含解析_第3頁(yè)
湖南省德山鄉(xiāng)龍?zhí)垛种袑W(xué)2024屆中考四模數(shù)學(xué)試題含解析_第4頁(yè)
湖南省德山鄉(xiāng)龍?zhí)垛种袑W(xué)2024屆中考四模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖南省德山鄉(xiāng)龍?zhí)垛种袑W(xué)2024學(xué)年中考四模數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.計(jì)算﹣1﹣(﹣4)的結(jié)果為()A.﹣3 B.3 C.﹣5 D.52.如圖,在△ABC中,CD⊥AB于點(diǎn)D,E,F(xiàn)分別為AC,BC的中點(diǎn),AB=10,BC=8,DE=4.5,則△DEF的周長(zhǎng)是()A.9.5 B.13.5 C.14.5 D.173.如圖,將半徑為2的圓形紙片折疊后,圓弧恰好經(jīng)過(guò)圓心,則折痕的長(zhǎng)度為()A. B.2 C. D.4.如圖,在正方形OABC中,點(diǎn)A的坐標(biāo)是(﹣3,1),點(diǎn)B的縱坐標(biāo)是4,則B,C兩點(diǎn)的坐標(biāo)分別是()A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)5.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個(gè)正六邊形的邊心距OM的長(zhǎng)為()A.2 B.2 C. D.46.實(shí)數(shù)在數(shù)軸上的點(diǎn)的位置如圖所示,則下列不等關(guān)系正確的是()A.a(chǎn)+b>0 B.a(chǎn)-b<0 C.<0 D.>7.若等式(-5)□5=–1成立,則□內(nèi)的運(yùn)算符號(hào)為()A.+ B.– C.× D.÷8.運(yùn)用圖形變化的方法研究下列問(wèn)題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是(

)A. B. C. D.9.如圖,△ABC為鈍角三角形,將△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)120°得到△AB′C′,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為()A.45° B.60° C.70° D.90°10.下列實(shí)數(shù)中,無(wú)理數(shù)是()A.3.14 B.1.01001 C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,點(diǎn)O(0,0),B(0,1)是正方形OBB1C的兩個(gè)頂點(diǎn),以對(duì)角線OB1為一邊作正方形OB1B2C1,再以正方形OB1B2C1的對(duì)角線OB2為一邊作正方形OB2B3C2,……,依次下去.則點(diǎn)B6的坐標(biāo)____________.12.已知是整數(shù),則正整數(shù)n的最小值為_(kāi)__13.二次函數(shù)的圖象與x軸有____個(gè)交點(diǎn)

.14.如圖,在直角三角形ABC中,∠ACB=90°,CA=4,點(diǎn)P是半圓弧AC的中點(diǎn),連接BP,線段即把圖形APCB(指半圓和三角形ABC組成的圖形)分成兩部分,則這兩部分面積之差的絕對(duì)值是_____.15.=________16.如圖,AB是⊙O的直徑,且經(jīng)過(guò)弦CD的中點(diǎn)H,過(guò)CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線,切點(diǎn)為F.若∠ACF=65°,則∠E=.17.如圖,中,,,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至,使得點(diǎn)恰好落在上,與交于點(diǎn),則的面積為_(kāi)________.三、解答題(共7小題,滿分69分)18.(10分)一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品成本價(jià)10元/件,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于16元/件,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(件)與銷售價(jià)x(元/件)之間的函數(shù)關(guān)系如圖所示.(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;(2)求每天的銷售利潤(rùn)W(元)與銷售價(jià)x(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?19.(5分)某校對(duì)六至九年級(jí)學(xué)生圍繞“每天30分鐘的大課間,你最喜歡的體育活動(dòng)項(xiàng)目是什么?(只寫一項(xiàng))”的問(wèn)題,對(duì)在校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù).如圖是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問(wèn)題:該校對(duì)多少學(xué)生進(jìn)行了抽樣調(diào)查?本次抽樣調(diào)查中,最喜歡籃球活動(dòng)的有多少?占被調(diào)查人數(shù)的百分比是多少?若該校九年級(jí)共有200名學(xué)生,如圖是根據(jù)各年級(jí)學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計(jì)圖,請(qǐng)估計(jì)全校六至九年級(jí)學(xué)生中最喜歡跳繩活動(dòng)的人數(shù)約為多少?20.(8分)已知平行四邊形ABCD中,CE平分∠BCD且交AD于點(diǎn)E,AF∥CE,且交BC于點(diǎn)F.求證:△ABF≌△CDE;如圖,若∠1=65°,求∠B的大?。?1.(10分)先化簡(jiǎn),再求值:,其中x滿足x2-2x-2=0.22.(10分)某農(nóng)場(chǎng)用2臺(tái)大收割機(jī)和5臺(tái)小收割機(jī)同時(shí)工作2小時(shí)共收割小麥3.6公頃,3臺(tái)大收割機(jī)和2臺(tái)小收割機(jī)同時(shí)工作5小時(shí)共收割小麥8公頃.1臺(tái)大收割機(jī)和1臺(tái)小收割機(jī)每小時(shí)各收割小麥多少公頃?23.(12分)在一個(gè)不透明的布袋中裝兩個(gè)紅球和一個(gè)白球,這些球除顏色外均相同(1)攪勻后從袋中任意摸出1個(gè)球,摸出紅球的概率是.(2)甲、乙、丙三人依次從袋中摸出一個(gè)球,記錄顏色后不放回,試求出乙摸到白球的概率24.(14分)在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點(diǎn),連接BE.(1)如圖1,若∠ABE=15°,O為BE中點(diǎn),連接AO,且AO=1,求BC的長(zhǎng);(2)如圖2,D為AB上一點(diǎn),且滿足AE=AD,過(guò)點(diǎn)A作AF⊥BE交BC于點(diǎn)F,過(guò)點(diǎn)F作FG⊥CD交BE的延長(zhǎng)線于點(diǎn)G,交AC于點(diǎn)M,求證:BG=AF+FG.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、B【解題分析】

原式利用減法法則變形,計(jì)算即可求出值.【題目詳解】,故選:B.【題目點(diǎn)撥】本題主要考查了有理數(shù)的加減,熟練掌握有理數(shù)加減的運(yùn)算法則是解決本題的關(guān)鍵.2、B【解題分析】

由三角形中位線定理和直角三角形斜邊上的中線等于斜邊的一半解答.【題目詳解】∵在△ABC中,CD⊥AB于點(diǎn)D,E,F(xiàn)分別為AC,BC的中點(diǎn),∴DE=AC=4.1,DF=BC=4,EF=AB=1,∴△DEF的周長(zhǎng)=(AB+BC+AC)=×(10+8+9)=13.1.故選B.【題目點(diǎn)撥】考查了三角形中位線定理和直角三角形斜邊上的中線,三角形的中位線平行于第三邊,且等于第三邊的一半.3、C【解題分析】

過(guò)O作OC⊥AB,交圓O于點(diǎn)D,連接OA,由垂徑定理得到C為AB的中點(diǎn),再由折疊得到CD=OC,求出OC的長(zhǎng),在直角三角形AOC中,利用勾股定理求出AC的長(zhǎng),即可確定出AB的長(zhǎng).【題目詳解】過(guò)O作OC⊥AB,交圓O于點(diǎn)D,連接OA,由折疊得到CD=OC=OD=1cm,在Rt△AOC中,根據(jù)勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:AC=cm,則AB=2AC=2cm.故選C.【題目點(diǎn)撥】此題考查了垂徑定理,勾股定理,以及翻折的性質(zhì),熟練掌握垂徑定理是解本題的關(guān)鍵.4、A【解題分析】

作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,由AAS證明△AOE≌△OCD,得出AE=OD,OE=CD,由點(diǎn)A的坐標(biāo)是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.【題目詳解】解:如圖所示:作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,則∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.∵四邊形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.∵點(diǎn)A的坐標(biāo)是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).故選A.【題目點(diǎn)撥】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、坐標(biāo)與圖形性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等是解決問(wèn)題的關(guān)鍵.5、B【解題分析】分析:連接OC、OB,證出△BOC是等邊三角形,根據(jù)銳角三角函數(shù)的定義求解即可.詳解:如圖所示,連接OC、OB

∵多邊形ABCDEF是正六邊形,∴∠BOC=60°,∵OC=OB,∴△BOC是等邊三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2.故選B.點(diǎn)睛:考查的是正六邊形的性質(zhì)、等邊三角形的判定與性質(zhì)、三角函數(shù);熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問(wèn)題的關(guān)鍵.6、C【解題分析】

根據(jù)點(diǎn)在數(shù)軸上的位置,可得a,b的關(guān)系,根據(jù)有理數(shù)的運(yùn)算,可得答案.【題目詳解】解:由數(shù)軸,得b<-1,0<a<1.A、a+b<0,故A錯(cuò)誤;B、a-b>0,故B錯(cuò)誤;C、<0,故C符合題意;D、a2<1<b2,故D錯(cuò)誤;故選C.【題目點(diǎn)撥】本題考查了實(shí)數(shù)與數(shù)軸,利用點(diǎn)在數(shù)軸上的位置得出b<-1,0<a<1是解題關(guān)鍵,又利用了有理數(shù)的運(yùn)算.7、D【解題分析】

根據(jù)有理數(shù)的除法可以解答本題.【題目詳解】解:∵(﹣5)÷5=﹣1,∴等式(﹣5)□5=﹣1成立,則□內(nèi)的運(yùn)算符號(hào)為÷,故選D.【題目點(diǎn)撥】考查有理數(shù)的混合運(yùn)算,解答本題的關(guān)鍵是明確有理數(shù)的混合運(yùn)算的計(jì)算方法.8、A【解題分析】【分析】作直徑CG,連接OD、OE、OF、DG,則根據(jù)圓周角定理求得DG的長(zhǎng),證明DG=EF,則S扇形ODG=S扇形OEF,然后根據(jù)三角形的面積公式證明S△OCD=S△ACD,S△OEF=S△AEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.【題目詳解】作直徑CG,連接OD、OE、OF、DG.∵CG是圓的直徑,∴∠CDG=90°,則DG==8,又∵EF=8,∴DG=EF,∴,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓=π×52=,故選A.【題目點(diǎn)撥】本題考查扇形面積的計(jì)算,圓周角定理.本題中找出兩個(gè)陰影部分面積之間的聯(lián)系是解題的關(guān)鍵.9、D【解題分析】已知△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)l20°得到△AB′C′,根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠BAB′=∠CAC′=120°,AB=AB′,根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故選D.10、C【解題分析】

先把能化簡(jiǎn)的數(shù)化簡(jiǎn),然后根據(jù)無(wú)理數(shù)的定義逐一判斷即可得.【題目詳解】A、3.14是有理數(shù);B、1.01001是有理數(shù);C、是無(wú)理數(shù);D、是分?jǐn)?shù),為有理數(shù);故選C.【題目點(diǎn)撥】本題主要考查無(wú)理數(shù)的定義,屬于簡(jiǎn)單題.二、填空題(共7小題,每小題3分,滿分21分)11、(-1,0)【解題分析】根據(jù)已知條件由圖中可以得到B1所在的正方形的對(duì)角線長(zhǎng)為,B2所在的正方形的對(duì)角線長(zhǎng)為()2,B3所在的正方形的對(duì)角線長(zhǎng)為()3;B4所在的正方形的對(duì)角線長(zhǎng)為()4;B5所在的正方形的對(duì)角線長(zhǎng)為()5;可推出B6所在的正方形的對(duì)角線長(zhǎng)為()6=1.又因?yàn)锽6在x軸負(fù)半軸,所以B6(-1,0).解:如圖所示∵正方形OBB1C,∴OB1=,B1所在的象限為第一象限;∴OB2=()2,B2在x軸正半軸;∴OB3=()3,B3所在的象限為第四象限;∴OB4=()4,B4在y軸負(fù)半軸;∴OB5=()5,B5所在的象限為第三象限;∴OB6=()6=1,B6在x軸負(fù)半軸.∴B6(-1,0).故答案為(-1,0).12、1【解題分析】

因?yàn)槭钦麛?shù),且,則1n是完全平方數(shù),滿足條件的最小正整數(shù)n為1.【題目詳解】∵,且是整數(shù),

∴是整數(shù),即1n是完全平方數(shù);

∴n的最小正整數(shù)值為1.

故答案為:1.【題目點(diǎn)撥】主要考查了二次根式的定義,關(guān)鍵是根據(jù)乘除法法則和二次根式有意義的條件.二次根式有意義的條件是被開(kāi)方數(shù)是非負(fù)數(shù)進(jìn)行解答.13、2【解題分析】【分析】根據(jù)一元二次方程x2+mx+m-2=0的根的判別式的符號(hào)進(jìn)行判定二次函數(shù)y=x2+mx+m-2的圖象與x軸交點(diǎn)的個(gè)數(shù).【題目詳解】二次函數(shù)y=x2+mx+m-2的圖象與x軸交點(diǎn)的縱坐標(biāo)是零,即當(dāng)y=0時(shí),x2+mx+m-2=0,∵△=m2-4(m-2)=(m-2)2+4>0,∴一元二次方程x2+mx+m-2=0有兩個(gè)不相等是實(shí)數(shù)根,即二次函數(shù)y=x2+mx+m-2的圖象與x軸有2個(gè)交點(diǎn),故答案為:2.【題目點(diǎn)撥】本題考查了拋物線與x軸的交點(diǎn).二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的交點(diǎn)與一元二次方程ax2+bx+c=0根之間的關(guān)系.△=b2-4ac決定拋物線與x軸的交點(diǎn)個(gè)數(shù).△=b2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);△=b2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);△=b2-4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn).14、4【解題分析】

連接把兩部分的面積均可轉(zhuǎn)化為規(guī)則圖形的面積,不難發(fā)現(xiàn)兩部分面積之差的絕對(duì)值即為的面積的2倍.【題目詳解】解:連接OP、OB,∵圖形BAP的面積=△AOB的面積+△BOP的面積+扇形OAP的面積,圖形BCP的面積=△BOC的面積+扇形OCP的面積?△BOP的面積,又∵點(diǎn)P是半圓弧AC的中點(diǎn),OA=OC,∴扇形OAP的面積=扇形OCP的面積,△AOB的面積=△BOC的面積,∴兩部分面積之差的絕對(duì)值是點(diǎn)睛:考查扇形面積和三角形的面積,把不規(guī)則圖形的面積轉(zhuǎn)化為規(guī)則圖形的面積是解題的關(guān)鍵.15、13【解題分析】=2+9-4+6=13.故答案是:13.16、50°.【解題分析】

解:連接DF,連接AF交CE于G,∵EF為⊙O的切線,∴∠OFE=90°,∵AB為直徑,H為CD的中點(diǎn)∴AB⊥CD,即∠BHE=90°,∵∠ACF=65°,∴∠AOF=130°,∴∠E=360°-∠BHE-∠OFE-∠AOF=50°,故答案為:50°.17、【解題分析】

首先證明△CAA′是等邊三角形,再證明△A′DC是直角三角形,在Rt△A′DC中利用含30度的直角三角形三邊的關(guān)系求出CD、A′D即可解決問(wèn)題.【題目詳解】在Rt△ACB中,∠ACB=90°,∠B=30°,

∴∠A=60°,

∵△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)至△A′B′C,使得點(diǎn)A′恰好落在AB上,

∴CA=CA′=2,∠CA′B′=∠A=60°,

∴△CAA′為等邊三角形,

∴∠ACA′=60°,

∴∠BCA′=∠ACB-∠ACA′=90°-60°=30°,

∴∠A′DC=180°-∠CA′B′-∠BCA′=90°,

在Rt△A′DC中,∵∠A′CD=30°,∴A′D=CA′=1,CD=A′D=,∴.故答案為:【題目點(diǎn)撥】本題考查了含30度的直角三角形三邊的關(guān)系,等邊三角形的判定和性質(zhì)以及旋轉(zhuǎn)的性質(zhì),掌握旋轉(zhuǎn)的性質(zhì)“對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等”是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)y=-x+40(10≤x≤16);(2)每件銷售價(jià)為16元時(shí),每天的銷售利潤(rùn)最大,最大利潤(rùn)是144元.【解題分析】

根據(jù)題可設(shè)出一般式,再由圖中數(shù)據(jù)帶入可得答案,根據(jù)題目中的x的取值可得結(jié)果.②由總利潤(rùn)=數(shù)量×單間商品的利潤(rùn)可得函數(shù)式,可得解析式為一元二次式,配成頂點(diǎn)式可求出最大利潤(rùn)時(shí)的銷售價(jià),即可得出答案.【題目詳解】(1)y=-x+40(10≤x≤16).(2)根據(jù)題意,得:W=(x-10)y=(x-10)(-x+40)=-∵a=-1<0∴當(dāng)x<25時(shí),W隨x的增大而增大∵10≤x≤16∴當(dāng)x=16時(shí),W取得最大值,最大值是144答:每件銷售價(jià)為16元時(shí),每天的銷售利潤(rùn)最大,最大利潤(rùn)是144元.【題目點(diǎn)撥】熟悉掌握?qǐng)D中所給信息以及列方程組是解決本題的關(guān)鍵.19、(1)50(2)36%(3)160【解題分析】

(1)根據(jù)條形圖的意義,將各組人數(shù)依次相加即可得到答案;(2)根據(jù)條形圖可直接得到最喜歡籃球活動(dòng)的人數(shù),除以(1)中的調(diào)查總?cè)藬?shù)即可得出其所占的百分比;(3)用樣本估計(jì)總體,先求出九年級(jí)占全校總?cè)藬?shù)的百分比,然后求出全校的總?cè)藬?shù);再根據(jù)最喜歡跳繩活動(dòng)的學(xué)生所占的百分比,繼而可估計(jì)出全校學(xué)生中最喜歡跳繩活動(dòng)的人數(shù).【題目詳解】(1)該校對(duì)名學(xué)生進(jìn)行了抽樣調(diào)查.本次調(diào)查中,最喜歡籃球活動(dòng)的有人,,∴最喜歡籃球活動(dòng)的人數(shù)占被調(diào)查人數(shù)的.(3),人,人.答:估計(jì)全校學(xué)生中最喜歡跳繩活動(dòng)的人數(shù)約為人.【題目點(diǎn)撥】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖中各部分占總體的百分比之和為1,直接反映部分占總體的百分比大?。?0、(1)證明見(jiàn)解析;(2)50°.【解題分析】試題分析:(1)由平行四邊形的性質(zhì)得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,證出∠AFB=∠1,由AAS證明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四邊形的性質(zhì)和三角形內(nèi)角和定理即可得出結(jié)果.試題解析:(1)∵四邊形ABCD是平行四邊形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.考點(diǎn):(1)平行四邊形的性質(zhì);(2)全等三角形的判定與性質(zhì).21、【解題分析】分析:先根據(jù)分式的混合運(yùn)算順序和運(yùn)算法則化簡(jiǎn)原式,再由x2-2x-2=0得x2=2x+2=2(x+1),整體代入計(jì)算可得.詳解:原式===,∵x2-2x-2=0,∴x2=2x+2=2(x+1),則原式=.點(diǎn)睛:本題主要考查分式的化簡(jiǎn)求值,解題的關(guān)鍵是掌握分式的混合運(yùn)算順序和運(yùn)算法則.22、1臺(tái)大收割機(jī)和1臺(tái)小收割機(jī)每小時(shí)各收割小麥0.4hm2和0.2hm2.【解題分析】

此題可設(shè)1臺(tái)大收割機(jī)和1臺(tái)小收割機(jī)每小時(shí)各收割小麥x公頃和y公頃,根據(jù)題中的等量關(guān)系列出二元一次方程組解答即可【題目詳解】設(shè)1臺(tái)大收割機(jī)和1臺(tái)小收割機(jī)每小時(shí)各收割小麥x公頃和y公頃根據(jù)題意可得解得答:每臺(tái)大小收割機(jī)每小時(shí)分別收割0.4公頃和0.2公頃.【題目點(diǎn)撥】此題主要考查了二元一次方程組的實(shí)際應(yīng)用,解題關(guān)鍵在于弄清題意,找到合適的等量關(guān)系23、(1);(2).【解題分析】

(1)直接利用概率公式求解;

(2)畫樹狀圖展示所有6種等可能的結(jié)果數(shù),再找出乙摸到白球的結(jié)果數(shù),然后根據(jù)概率公式求解.【題目詳解】解:(1)攪勻后從

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論