廣東省廣州市荔灣區(qū)2024屆中考數(shù)學(xué)五模試卷含解析_第1頁
廣東省廣州市荔灣區(qū)2024屆中考數(shù)學(xué)五模試卷含解析_第2頁
廣東省廣州市荔灣區(qū)2024屆中考數(shù)學(xué)五模試卷含解析_第3頁
廣東省廣州市荔灣區(qū)2024屆中考數(shù)學(xué)五模試卷含解析_第4頁
廣東省廣州市荔灣區(qū)2024屆中考數(shù)學(xué)五模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省廣州市荔灣區(qū)2024屆中考數(shù)學(xué)五模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.圖(1)是一個長為2m,寬為2n(m>n)的長方形,用剪刀沿圖中虛線(對稱軸)剪開,把它分成四塊形狀和大小都一樣的小長方形,然后按圖(2)那樣拼成一個正方形,則中間空的部分的面積是()A.2mn B.(m+n)2 C.(m-n)2 D.m2-n22.若,則3(x-2)2A.﹣6B.6C.18D.303.如圖,在△ABC中,∠C=90°,AC=BC=3cm.動點P從點A出發(fā),以cm/s的速度沿AB方向運動到點B.動點Q同時從點A出發(fā),以1cm/s的速度沿折線ACCB方向運動到點B.設(shè)△APQ的面積為y(cm2).運動時間為x(s),則下列圖象能反映y與x之間關(guān)系的是()A. B.C. D.4.拋物線y=3(x﹣2)2+5的頂點坐標是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)5.為了解中學(xué)300名男生的身高情況,隨機抽取若干名男生進行身高測量,將所得數(shù)據(jù)整理后,畫出頻數(shù)分布直方圖(如圖).估計該校男生的身高在169.5cm~174.5cm之間的人數(shù)有()A.12 B.48 C.72 D.966.如圖,點P是以O(shè)為圓心,AB為直徑的半圓上的動點,AB=2,設(shè)弦AP的長為x,△APO的面積為y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是A.B.C.D.7.小紅上學(xué)要經(jīng)過兩個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望上學(xué)時經(jīng)過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.8.甲、乙兩人約好步行沿同一路線同一方向在某景點集合,已知甲乙二人相距660米,二人同時出發(fā),走了24分鐘時,由于乙距離景點近,先到達等候甲,甲共走了30分鐘也到達了景點與乙相遇.在整個行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程(米)與甲出發(fā)的時間(分鐘)之間的關(guān)系如圖所示,下列說法錯誤的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距離景點2100米 D.乙距離景點420米9.如圖是某商品的標志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點A,B,C,D,得到四邊形ABCD.若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為()A. B. C. D.10.二次函數(shù)y=(2x-1)2+2的頂點的坐標是()A.(1,2) B.(1,-2) C.(,2)

D.(-,-2)二、填空題(共7小題,每小題3分,滿分21分)11.在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間.甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲、乙行駛過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數(shù)關(guān)系如圖所示.則當乙車到達A地時,甲車已在C地休息了_____小時.12.已知ab=﹣2,a﹣b=3,則a3b﹣2a2b2+ab3的值為_______.13.現(xiàn)有八個大小相同的矩形,可拼成如圖1、2所示的圖形,在拼圖2時,中間留下了一個邊長為2的小正方形,則每個小矩形的面積是_____.14.如圖,已知△ABC中,AB=AC=5,BC=8,將△ABC沿射線BC方向平移m個單位得到△DEF,頂點A,B,C分別與D,E,F(xiàn)對應(yīng),若以A,D,E為頂點的三角形是等腰三角形,且AE為腰,則m的值是______.15.如圖,在平面直角坐標系中,反比例函數(shù)y=(x>0)的圖象交矩形OABC的邊AB于點D,交BC于點E,且BE=2EC,若四邊形ODBE的面積為8,則k=_____.16.方程=的解是____.17.菱形ABCD中,∠A=60°,AB=9,點P是菱形ABCD內(nèi)一點,PB=PD=3,則AP的長為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,直線與第一象限的一支雙曲線交于A、B兩點,A在B的左邊.(1)若=4,B(3,1),求直線及雙曲線的解析式:并直接寫出不等式的解集;(2)若A(1,3),第三象限的雙曲線上有一點C,接AC、BC,設(shè)直線BC解析式為;當AC⊥AB時,求證:k為定值.19.(5分)如圖,在平面直角坐標系中,拋物線與x軸交于點A、B,與y軸交于點C,直線y=x+4經(jīng)過點A、C,點P為拋物線上位于直線AC上方的一個動點.(1)求拋物線的表達式;(2)如圖,當CP//AO時,求∠PAC的正切值;(3)當以AP、AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上時,求出此時點P的坐標.20.(8分)如圖,在平行四邊形ABCD中,E為BC邊上一點,連結(jié)AE、BD且AE=AB.求證:∠ABE=∠EAD;若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.21.(10分)已知關(guān)于的方程有兩個實數(shù)根.求的取值范圍;若,求的值;22.(10分)如圖1,三個正方形ABCD、AEMN、CEFG,其中頂點D、C、G在同一條直線上,點E是BC邊上的動點,連結(jié)AC、AM.(1)求證:△ACM∽△ABE.(2)如圖2,連結(jié)BD、DM、MF、BF,求證:四邊形BFMD是平行四邊形.(3)若正方形ABCD的面積為36,正方形CEFG的面積為4,求五邊形ABFMN的面積.23.(12分)如圖,點A是直線AM與⊙O的交點,點B在⊙O上,BD⊥AM,垂足為D,BD與⊙O交于點C,OC平分∠AOB,∠B=60°.求證:AM是⊙O的切線;若⊙O的半徑為4,求圖中陰影部分的面積(結(jié)果保留π和根號).24.(14分)4件同型號的產(chǎn)品中,有1件不合格品和3件合格品.從這4件產(chǎn)品中隨機抽取1件進行檢測,求抽到的是不合格品的概率;從這4件產(chǎn)品中隨機抽取2件進行檢測,求抽到的都是合格品的概率;在這4件產(chǎn)品中加入x件合格品后,進行如下試驗:隨機抽取1件進行檢測,然后放回,多次重復(fù)這個試驗,通過大量重復(fù)試驗后發(fā)現(xiàn),抽到合格品的頻率穩(wěn)定在0.95,則可以推算出x的值大約是多少?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】

解:由題意可得,正方形的邊長為(m+n),故正方形的面積為(m+n)1.又∵原矩形的面積為4mn,∴中間空的部分的面積=(m+n)1-4mn=(m-n)1.故選C.2、B【解題分析】試題分析:∵,即x2+4x=4,∴原式=3(x=-3x2-12x+18考點:整式的混合運算—化簡求值;整體思想;條件求值.3、D【解題分析】

在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,分當0<x≤3(點Q在AC上運動,點P在AB上運動)和當3≤x≤6時(點P與點B重合,點Q在CB上運動)兩種情況求出y與x的函數(shù)關(guān)系式,再結(jié)合圖象即可解答.【題目詳解】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,當0<x≤3時,點Q在AC上運動,點P在AB上運動(如圖1),由題意可得AP=x,AQ=x,過點Q作QN⊥AB于點N,在等腰直角三角形AQN中,求得QN=x,所以y==(0<x≤3),即當0<x≤3時,y隨x的變化關(guān)系是二次函數(shù)關(guān)系,且當x=3時,y=4.5;當3≤x≤6時,點P與點B重合,點Q在CB上運動(如圖2),由題意可得PQ=6-x,AP=3,過點Q作QN⊥BC于點N,在等腰直角三角形PQN中,求得QN=(6-x),所以y==(3≤x≤6),即當3≤x≤6時,y隨x的變化關(guān)系是一次函數(shù),且當x=6時,y=0.由此可得,只有選項D符合要求,故選D.【題目點撥】本題考查了動點函數(shù)圖象,解決本題要正確分析動線運動過程,然后再正確計算其對應(yīng)的函數(shù)解析式,由函數(shù)的解析式對應(yīng)其圖象,由此即可解答.4、C【解題分析】

根據(jù)二次函數(shù)的性質(zhì)y=a(x﹣h)2+k的頂點坐標是(h,k)進行求解即可.【題目詳解】∵拋物線解析式為y=3(x-2)2+5,∴二次函數(shù)圖象的頂點坐標是(2,5),故選C.【題目點撥】本題考查了二次函數(shù)的性質(zhì),根據(jù)拋物線的頂點式,可確定拋物線的開口方向,頂點坐標(對稱軸),最大(最小)值,增減性等.5、C【解題分析】

解:根據(jù)圖形,身高在169.5cm~174.5cm之間的人數(shù)的百分比為:,∴該校男生的身高在169.5cm~174.5cm之間的人數(shù)有300×24%=72(人).故選C.6、A。【解題分析】如圖,∵根據(jù)三角形面積公式,當一邊OA固定時,它邊上的高最大時,三角形面積最大,∴當PO⊥AO,即PO為三角形OA邊上的高時,△APO的面積y最大。此時,由AB=2,根據(jù)勾股定理,得弦AP=x=?!喈攛=時,△APO的面積y最大,最大面積為y=。從而可排除B,D選項。又∵當AP=x=1時,△APO為等邊三角形,它的面積y=,∴此時,點(1,)應(yīng)在y=的一半上方,從而可排除C選項。故選A。7、C【解題分析】

列舉出所有情況,看每個路口都是綠燈的情況數(shù)占總情況數(shù)的多少即可得.【題目詳解】畫樹狀圖如下,共4種情況,有1種情況每個路口都是綠燈,所以概率為.故選C.8、D【解題分析】

根據(jù)圖中信息以及路程、速度、時間之間的關(guān)系一一判斷即可.【題目詳解】甲的速度==70米/分,故A正確,不符合題意;設(shè)乙的速度為x米/分.則有,660+24x-70×24=420,解得x=60,故B正確,本選項不符合題意,70×30=2100,故選項C正確,不符合題意,24×60=1440米,乙距離景點1440米,故D錯誤,故選D.【題目點撥】本題考查一次函數(shù)的應(yīng)用,行程問題等知識,解題的關(guān)鍵是讀懂圖象信息,靈活運用所學(xué)知識解決問題.9、B【解題分析】試題解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的對角線把矩形分成了四個面積相等的三角形,∴陰影部分的面積=扇形AOD的面積+扇形BOC的面積=2扇形BOC的面積==10π.故選B.10、C【解題分析】試題分析:二次函數(shù)y=(2x-1)+2即的頂點坐標為(,2)考點:二次函數(shù)點評:本題考查二次函數(shù)的頂點坐標,考生要掌握二次函數(shù)的頂點式與其頂點坐標的關(guān)系二、填空題(共7小題,每小題3分,滿分21分)11、2.1.【解題分析】

根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得乙車的速度和到達A地時所用的時間,從而可以解答本題.【題目詳解】由題意可得,甲車到達C地用時4個小時,乙車的速度為:200÷(3.1﹣1)=80km/h,乙車到達A地用時為:(200+240)÷80+1=6.1(小時),當乙車到達A地時,甲車已在C地休息了:6.1﹣4=2.1(小時),故答案為:2.1.【題目點撥】本題考查了一次函數(shù)的圖象,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.12、﹣18【解題分析】

要求代數(shù)式a3b﹣2a2b2+ab3的值,而代數(shù)式a3b﹣2a2b2+ab3恰好可以分解為兩個已知條件ab,(a﹣b)的乘積,因此可以運用整體的數(shù)學(xué)思想來解答.【題目詳解】a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2,當a﹣b=3,ab=﹣2時,原式=﹣2×32=﹣18,故答案為:﹣18.【題目點撥】本題考查了因式分解在代數(shù)式求值中的應(yīng)用,熟練掌握因式分解的方法以及運用整體的數(shù)學(xué)思想是解題的關(guān)鍵.13、1.【解題分析】

設(shè)小矩形的長為x,寬為y,則由圖1可得5y=3x;由圖2可知2y-x=2.【題目詳解】解:設(shè)小矩形的長為x,寬為y,則可列出方程組,,解得,則小矩形的面積為6×10=1.【題目點撥】本題考查了二元一次方程組的應(yīng)用.14、或5或1.【解題分析】

根據(jù)以點A,D,E為頂點的三角形是等腰三角形分類討論即可.【題目詳解】解:如圖(1)當在△ADE中,DE=5,當AD=DE=5時為等腰三角形,此時m=5.(2)又AC=5,當平移m個單位使得E、C點重合,此時AE=ED=5,平移的長度m=BC=1,(3)可以AE、AD為腰使ADE為等腰三角形,設(shè)平移了m個單位:則AN=3,AC=,AD=m,得:,得m=,綜上所述:m為或5或1,所以答案:或5或1.【題目點撥】本題主要考查等腰三角形的性質(zhì),注意分類討論的完整性.15、1【解題分析】

連接OB,由矩形的性質(zhì)和已知條件得出△OBD的面積=△OBE的面積=四邊形ODBE的面積,再求出△OCE的面積為2,即可得出k的值.【題目詳解】連接OB,如圖所示:∵四邊形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面積=△OBC的面積,∵D、E在反比例函數(shù)y=(x>0)的圖象上,∴△OAD的面積=△OCE的面積,∴△OBD的面積=△OBE的面積=四邊形ODBE的面積=1,∵BE=2EC,∴△OCE的面積=△OBE的面積=2,∴k=1.故答案為:1.【題目點撥】本題考查了反比例函數(shù)的系數(shù)k的幾何意義:在反比例函數(shù)y=xk圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.在反比例函數(shù)的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構(gòu)成的三角形的面積是|k|,且保持不變.16、x=1【解題分析】

觀察可得方程最簡公分母為x(x?1),去分母,轉(zhuǎn)化為整式方程求解,結(jié)果要檢驗.【題目詳解】方程兩邊同乘x(x?1)得:3x=1(x?1),整理、解得x=1.檢驗:把x=1代入x(x?1)≠2.∴x=1是原方程的解,故答案為x=1.【題目點撥】解分式方程的基本思想是把分式方程轉(zhuǎn)化為整式方程,具體方法是方程兩邊同時乘以最簡公分母,在此過程中有可能會產(chǎn)生增根,增根是轉(zhuǎn)化后整式的根,不是原方程的根,因此要注意檢驗.17、3或6【解題分析】

分成P在OA上和P在OC上兩種情況進行討論,根據(jù)△ABD是等邊三角形,即可求得OA的長度,在直角△OBP中利用勾股定理求得OP的長,則AP即可求得.【題目詳解】設(shè)AC和BE相交于點O.當P在OA上時,∵AB=AD,∠A=60°,∴△ABD是等邊三角形,∴BD=AB=9,OB=OD=BD=.則AO=.在直角△OBP中,OP=.則AP=OA-OP-;當P在OC上時,AP=OA+OP=.故答案是:3或6.【題目點撥】本題考查了菱形的性質(zhì),注意到P在AC上,應(yīng)分兩種情況進行討論是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)1<x<3或x<0;(2)證明見解析.【解題分析】

(1)將B(3,1)代入,將B(3,1)代入,即可求出解析式;再根據(jù)圖像直接寫出不等式的解集;(2)過A作l∥x軸,過C作CG⊥l于G,過B作BH⊥l于H,△AGC∽△BHA,設(shè)B(m,)、C(n,),根據(jù)對應(yīng)線段成比例即可得出mn=-9,聯(lián)立,得,根據(jù)根與系數(shù)的關(guān)系得,由此得出為定值.【題目詳解】解:(1)將B(3,1)代入,∴m=3,,將B(3,1)代入,∴,,∴,∴不等式的解集為1<x<3或x<0(2)過A作l∥x軸,過C作CG⊥l于G,過B作BH⊥l于H,則△AGC∽△BHA,設(shè)B(m,)、C(n,),∵,∴,∴,∴,∴mn=-9,聯(lián)立∴,∴∴,∴為定值.【題目點撥】此題主要考查反比例函數(shù)的圖像與性質(zhì),解題的關(guān)鍵是根據(jù)題意作出輔助線,再根據(jù)反比例函數(shù)的性質(zhì)進行求解.19、(1)拋物線的表達式為;(2);(3)P點的坐標是.【解題分析】

分析:(1)由題意易得點A、C的坐標分別為(-1,0),(0,1),將這兩點坐標代入拋物線列出方程組,解得b、c的值即可求得拋物線的解析式;(2)如下圖,作PH⊥AC于H,連接OP,由已知條件先求得PC=2,AC=,結(jié)合S△APC,可求得PH=,再由OA=OC得到∠CAO=15°,結(jié)合CP∥OA可得∠PCA=15°,即可得到CH=PH=,由此可得AH=,這樣在Rt△APH中由tan∠PAC=即可求得所求答案了;(3)如圖,當四邊形AOPQ為符合要求的平行四邊形時,則此時PQ=AO=1,且點P、Q關(guān)于拋物線的對稱軸x=-1對稱,由此可得點P的橫坐標為-3,代入拋物線解析即可求得此時的點P的坐標.詳解:(1)∵直線y=x+1經(jīng)過點A、C,點A在x軸上,點C在y軸上∴A點坐標是(﹣1,0),點C坐標是(0,1),又∵拋物線過A,C兩點,∴解得,∴拋物線的表達式為;(2)作PH⊥AC于H,∵點C、P在拋物線上,CP//AO,C(0,1),A(-1,0)∴P(-2,1),AC=,∴PC=2,,∴PH=,∵A(﹣1,0),C(0,1),∴∠CAO=15°.∵CP//AO,∴∠ACP=∠CAO=15°,∵PH⊥AC,∴CH=PH=,∴.∴;(3)∵,∴拋物線的對稱軸為直線,∵以AP,AO為鄰邊的平行四邊形的第四個頂點Q恰好也在拋物線上,∴PQ∥AO,且PQ=AO=1.∵P,Q都在拋物線上,∴P,Q關(guān)于直線對稱,∴P點的橫坐標是﹣3,∵當x=﹣3時,,∴P點的坐標是.點睛:(1)解第2小題的關(guān)鍵是:作出如圖所示的輔助線,構(gòu)造出Rt△APH,并結(jié)合題中的已知條件求出PH和AH的長;(2)解第3小題的關(guān)鍵是:根據(jù)題意畫出符合要求的示意圖,并由PQ∥AO,PQ=AO及P、Q關(guān)于拋物線的對稱軸對稱得到點P的橫坐標.【題目詳解】請在此輸入詳解!20、(1)證明見解析;(2)證明見解析.【解題分析】

(1)根據(jù)平行四邊形的對邊互相平行可得AD∥BC,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠AEB=∠EAD,根據(jù)等邊對等角可得∠ABE=∠AEB,即可得證.(2)根據(jù)兩直線平行,內(nèi)錯角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根據(jù)等角對等邊求出AB=AD,然后利用鄰邊相等的平行四邊形是菱形證明即可.【題目詳解】證明:(1)∵在平行四邊形ABCD中,AD∥BC,∴∠AEB=∠EAD.∵AE=AB,∴∠ABE=∠AEB.∴∠ABE=∠EAD.(2)∵AD∥BC,∴∠ADB=∠DBE.∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB.∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB.∴AB=AD.又∵四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.21、(1);(2)k=-3【解題分析】

(1)依題意得△≥0,即[-2(k-1)]2-4k2≥0;(2)依題意x1+x2=2(k-1),x1·x2=k2以下分兩種情況討論:①當x1+x2≥0時,則有x1+x2=x1·x2-1,即2(k-1)=k2-1;②當x1+x2<0時,則有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1);【題目詳解】解:(1)依題意得△≥0,即[-2(k-1)]2-4k2≥0解得(2)依題意x1+x2=2(k-1),x1·x2=k2以下分兩種情況討論:①當x1+x2≥0時,則有x1+x2=x1·x2-1,即2(k-1)=k2-1解得k1=k2=1∵∴k1=k2=1不合題意,舍去②當x1+x2<0時,則有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1)解得k1=1,k2=-3∵∴k=-3綜合①、②可知k=-3【題目點撥】一元二次方程根與系數(shù)關(guān)系,根判別式.22、(1)證明見解析;(2)證明見解析;(3)74.【解題分析】

(1)根據(jù)四邊形ABCD和四邊形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可證△ACM∽△ABE;(2)連結(jié)AC,由△ACM∽△ABE得∠ACM=∠B=90°,易證∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,F(xiàn)C=CE,得MF=BD,從而可以證明四邊形BFMD是平行四邊形;(3)根據(jù)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【題目詳解】(1)證明:∵四邊形ABCD和四邊形AEMN都是正方形,∴,∠CAB=∠MAC=45°,∴∠CAB-∠CAE=∠MAC-∠CAE,∴∠BAE=∠CAM,∴△ACM∽△ABE.(2)證明:連結(jié)AC因為△ACM∽△ABE,則∠ACM=∠B=90°,因為∠ACB=∠ECF=45°,所以∠ACM+∠ACB+∠ECF=180°,所以點M,C,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論