2024屆江蘇淮安曙光雙語校中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第1頁
2024屆江蘇淮安曙光雙語校中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第2頁
2024屆江蘇淮安曙光雙語校中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第3頁
2024屆江蘇淮安曙光雙語校中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第4頁
2024屆江蘇淮安曙光雙語校中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆江蘇淮安曙光雙語校中考數(shù)學(xué)適應(yīng)性模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開往乙地(轎車的平均速度大于貨車的平均速度),如圖線段OA和折線BCD分別表示兩車離甲地的距離y(單位:千米)與時間x(單位:小時)之間的函數(shù)關(guān)系.則下列說法正確的是()A.兩車同時到達(dá)乙地B.轎車在行駛過程中進(jìn)行了提速C.貨車出發(fā)3小時后,轎車追上貨車D.兩車在前80千米的速度相等2.如圖,△ABC的內(nèi)切圓⊙O與AB,BC,CA分別相切于點(diǎn)D,E,F(xiàn),且AD=2,BC=5,則△ABC的周長為()A.16 B.14 C.12 D.103.已知x=1是方程x2+mx+n=0的一個根,則代數(shù)式m2+2mn+n2的值為()A.–1B.2C.1D.–24.如圖,A,B,C,D,E,G,H,M,N都是方格紙中的格點(diǎn)(即小正方形的頂點(diǎn)),要使△DEF與△ABC相似,則點(diǎn)F應(yīng)是G,H,M,N四點(diǎn)中的()A.H或N B.G或H C.M或N D.G或M5.如圖,△ABC中,BC=4,⊙P與△ABC的邊或邊的延長線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長為()A.8 B.10 C.13 D.146.如圖,4張如圖1的長為a,寬為b(a>b)長方形紙片,按圖2的方式放置,陰影部分的面積為S1,空白部分的面積為S2,若S2=2S1,則a,b滿足()A.a(chǎn)= B.a(chǎn)=2b C.a(chǎn)=b D.a(chǎn)=3b7.如圖,數(shù)軸上有M、N、P、Q四個點(diǎn),其中點(diǎn)P所表示的數(shù)為a,則數(shù)-3a所對應(yīng)的點(diǎn)可能是()A.M B.N C.P D.Q8.如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1259.有四包真空包裝的火腿腸,每包以標(biāo)準(zhǔn)質(zhì)量450g為基準(zhǔn),超過的克數(shù)記作正數(shù),不足的克數(shù)記作負(fù)數(shù).下面的數(shù)據(jù)是記錄結(jié)果,其中與標(biāo)準(zhǔn)質(zhì)量最接近的是()A.+2 B.﹣3 C.+4 D.﹣110.如圖,將矩形ABCD沿對角線BD折疊,點(diǎn)C落在點(diǎn)E處,BE交AD于點(diǎn)F,已知∠BDC=62°,則∠DFE的度數(shù)為()A.31° B.28° C.62° D.56°二、填空題(本大題共6個小題,每小題3分,共18分)11.方程的解是_________.12.若不等式組的解集為,則________.13.如圖,在平面直角坐標(biāo)系中,將矩形AOCD沿直線AE折疊(點(diǎn)E在邊DC上),折疊后頂點(diǎn)D恰好落在邊OC上的點(diǎn)F處.若點(diǎn)D的坐標(biāo)為(10,8),則點(diǎn)E的坐標(biāo)為.14.如圖,△ABC的兩條高AD,BE相交于點(diǎn)F,請?zhí)砑右粋€條件,使得△ADC≌△BEC(不添加其他字母及輔助線),你添加的條件是_____.15.如圖1是我國古代著名的“趙爽弦圖”的示意圖,它是由四個全等的直角三角形圍成.若較短的直角邊BC=5,將四個直角三角形中較長的直角邊分別向外延長一倍,得到圖2所示的“數(shù)學(xué)風(fēng)車”,若△BCD的周長是30,則這個風(fēng)車的外圍周長是_____.16.已知y與x的函數(shù)滿足下列條件:①它的圖象經(jīng)過(1,1)點(diǎn);②當(dāng)時,y隨x的增大而減?。畬懗鲆粋€符合條件的函數(shù):__________.三、解答題(共8題,共72分)17.(8分)已知AC,EC分別為四邊形ABCD和EFCG的對角線,點(diǎn)E在△ABC內(nèi),∠CAE+∠CBE=1.(1)如圖①,當(dāng)四邊形ABCD和EFCG均為正方形時,連接BF.i)求證:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的長;(2)如圖②,當(dāng)四邊形ABCD和EFCG均為矩形,且時,若BE=1,AE=2,CE=3,求k的值;(3)如圖③,當(dāng)四邊形ABCD和EFCG均為菱形,且∠DAB=∠GEF=45°時,設(shè)BE=m,AE=n,CE=p,試探究m,n,p三者之間滿足的等量關(guān)系.(直接寫出結(jié)果,不必寫出解答過程)18.(8分)已知,拋物線y=ax2+c過點(diǎn)(-2,2)和點(diǎn)(4,5),點(diǎn)F(0,2)是y軸上的定點(diǎn),點(diǎn)B是拋物線上除頂點(diǎn)外的任意一點(diǎn),直線l:y=kx+b經(jīng)過點(diǎn)B、F且交x軸于點(diǎn)A.(1)求拋物線的解析式;(2)①如圖1,過點(diǎn)B作BC⊥x軸于點(diǎn)C,連接FC,求證:FC平分∠BFO;②當(dāng)k=時,點(diǎn)F是線段AB的中點(diǎn);(3)如圖2,M(3,6)是拋物線內(nèi)部一點(diǎn),在拋物線上是否存在點(diǎn)B,使△MBF的周長最???若存在,求出這個最小值及直線l的解析式;若不存在,請說明理由.19.(8分)在平面直角坐標(biāo)系xOy中有不重合的兩個點(diǎn)與.若Q、P為某個直角三角形的兩個銳角頂點(diǎn),當(dāng)該直角三角形的兩條直角邊分別與x軸或y軸平行(或重合),則我們將該直角三角形的兩條直角邊的邊長之和稱為點(diǎn)Q與點(diǎn)P之間的“直距”記做,特別地,當(dāng)PQ與某條坐標(biāo)軸平行(或重合)時,線段PQ的長即為點(diǎn)Q與點(diǎn)P之間的“直距”.例如下圖中,點(diǎn),點(diǎn),此時點(diǎn)Q與點(diǎn)P之間的“直距”.(1)①已知O為坐標(biāo)原點(diǎn),點(diǎn),,則_________,_________;②點(diǎn)C在直線上,求出的最小值;(2)點(diǎn)E是以原點(diǎn)O為圓心,1為半徑的圓上的一個動點(diǎn),點(diǎn)F是直線上一動點(diǎn).直接寫出點(diǎn)E與點(diǎn)F之間“直距”的最小值.20.(8分)如圖,△ABC三個頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4)(1)請畫出將△ABC向左平移4個單位長度后得到的圖形△A1B1C1;(2)請畫出△ABC關(guān)于原點(diǎn)O成中心對稱的圖形△A2B2C2;(3)在x軸上找一點(diǎn)P,使PA+PB的值最小,請直接寫出點(diǎn)P的坐標(biāo).21.(8分)為進(jìn)一步打造“宜居重慶”,某區(qū)擬在新竣工的矩形廣場的內(nèi)部修建一個音樂噴泉,要求音樂噴泉M到廣場的兩個入口A、B的距離相等,且到廣場管理處C的距離等于A和B之間距離的一半,A、B、C的位置如圖所示.請在答題卷的原圖上利用尺規(guī)作圖作出音樂噴泉M的位置.(要求:不寫已知、求作、作法和結(jié)論,保留作圖痕跡,必須用鉛筆作圖)22.(10分)先化簡,再求代數(shù)式()÷的值,其中a=2sin45°+tan45°.23.(12分)如圖,點(diǎn)A,B,C,D在同一條直線上,點(diǎn)E,F(xiàn)分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.(1)求證:四邊形BFCE是平行四邊形;(2)若AD=10,DC=3,∠EBD=60°,則BE=時,四邊形BFCE是菱形.24.某水果基地計劃裝運(yùn)甲、乙、丙三種水果到外地銷售(每輛汽車規(guī)定滿載,并且只裝一種水果).如表為裝運(yùn)甲、乙、丙三種水果的重量及利潤.甲乙丙每輛汽車能裝的數(shù)量(噸)423每噸水果可獲利潤(千元)574(1)用8輛汽車裝運(yùn)乙、丙兩種水果共22噸到A地銷售,問裝運(yùn)乙、丙兩種水果的汽車各多少輛?(2)水果基地計劃用20輛汽車裝運(yùn)甲、乙、丙三種水果共72噸到B地銷售(每種水果不少于一車),假設(shè)裝運(yùn)甲水果的汽車為m輛,則裝運(yùn)乙、丙兩種水果的汽車各多少輛?(結(jié)果用m表示)(3)在(2)問的基礎(chǔ)上,如何安排裝運(yùn)可使水果基地獲得最大利潤?最大利潤是多少?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】

①根據(jù)函數(shù)的圖象即可直接得出結(jié)論;②求得直線OA和DC的解析式,求得交點(diǎn)坐標(biāo)即可;③由圖象無法求得B的橫坐標(biāo);④分別進(jìn)行運(yùn)算即可得出結(jié)論.【題目詳解】由題意和圖可得,轎車先到達(dá)乙地,故選項A錯誤,轎車在行駛過程中進(jìn)行了提速,故選項B正確,貨車的速度是:300÷5=60千米/時,轎車在BC段對應(yīng)的速度是:千米/時,故選項D錯誤,設(shè)貨車對應(yīng)的函數(shù)解析式為y=kx,5k=300,得k=60,即貨車對應(yīng)的函數(shù)解析式為y=60x,設(shè)CD段轎車對應(yīng)的函數(shù)解析式為y=ax+b,,得,即CD段轎車對應(yīng)的函數(shù)解析式為y=110x-195,令60x=110x-195,得x=3.9,即貨車出發(fā)3.9小時后,轎車追上貨車,故選項C錯誤,故選:B.【題目點(diǎn)撥】此題考查一次函數(shù)的應(yīng)用,解題的關(guān)鍵在于利用題中信息列出函數(shù)解析式2、B【解題分析】

根據(jù)切線長定理進(jìn)行求解即可.【題目詳解】∵△ABC的內(nèi)切圓⊙O與AB,BC,CA分別相切于點(diǎn)D,E,F(xiàn),∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周長=2+2+5+5=14,故選B.【題目點(diǎn)撥】本題考查了三角形的內(nèi)切圓以及切線長定理,熟練掌握切線長定理是解題的關(guān)鍵.3、C【解題分析】

把x=1代入x2+mx+n=0,可得m+n=-1,然后根據(jù)完全平方公式把m2+2mn+n2變形后代入計算即可.【題目詳解】把x=1代入x2+mx+n=0,代入1+m+n=0,∴m+n=-1,∴m2+2mn+n2=(m+n)2=1.故選C.【題目點(diǎn)撥】本題考查了方程的根和整體代入法求代數(shù)式的值,能使方程兩邊相等的未知數(shù)的值叫做方程的根.4、C【解題分析】

根據(jù)兩三角形三條邊對應(yīng)成比例,兩三角形相似進(jìn)行解答【題目詳解】設(shè)小正方形的邊長為1,則△ABC的各邊分別為3、、,只能F是M或N時,其各邊是6、2,2.與△ABC各邊對應(yīng)成比例,故選C【題目點(diǎn)撥】本題考查了相似三角形的判定,相似三角形對應(yīng)邊成比例是解題的關(guān)鍵5、C【解題分析】

根據(jù)三角形的面積公式以及切線長定理即可求出答案.【題目詳解】連接PE、PF、PG,AP,由題意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=BC?PE=×4×2=4,∴由切線長定理可知:S△PFC+S△PBG=S△PBC=4,∴S四邊形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切線長定理可知:S△APG=S四邊形AFPG=,∴=×AG?PG,∴AG=,由切線長定理可知:CE=CF,BE=BG,∴△ABC的周長為AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故選C.【題目點(diǎn)撥】本題考查切線長定理,解題的關(guān)鍵是畫出輔助線,熟練運(yùn)用切線長定理,本題屬于中等題型.6、B【解題分析】

從圖形可知空白部分的面積為S2是中間邊長為(a﹣b)的正方形面積與上下兩個直角邊為(a+b)和b的直角三角形的面積,再與左右兩個直角邊為a和b的直角三角形面積的總和,陰影部分的面積為S1是大正方形面積與空白部分面積之差,再由S2=2S1,便可得解.【題目詳解】由圖形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故選B.【題目點(diǎn)撥】本題主要考查了求陰影部分面積和因式分解,關(guān)鍵是正確列出陰影部分與空白部分的面積和正確進(jìn)行因式分解.7、A【解題分析】解:∵點(diǎn)P所表示的數(shù)為a,點(diǎn)P在數(shù)軸的右邊,∴-3a一定在原點(diǎn)的左邊,且到原點(diǎn)的距離是點(diǎn)P到原點(diǎn)距離的3倍,∴數(shù)-3a所對應(yīng)的點(diǎn)可能是M,故選A.點(diǎn)睛:本題考查了數(shù)軸,解決本題的關(guān)鍵是判斷-3a一定在原點(diǎn)的左邊,且到原點(diǎn)的距離是點(diǎn)P到原點(diǎn)距離的3倍.8、B【解題分析】

根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進(jìn)而可求出CE2+CF2的值.【題目詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,

又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,

∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,

∴CM=EM=MF=5,EF=10,

由勾股定理可知CE2+CF2=EF2=1.

故選:B.【題目點(diǎn)撥】本題考查角平分線的定義(從一個角的頂點(diǎn)引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運(yùn)用,解題的關(guān)鍵是首先證明出△ECF為直角三角形.9、D【解題分析】試題解析:因?yàn)閨+2|=2,|-3|=3,|+4|=4,|-1|=1,由于|-1|最小,所以從輕重的角度看,質(zhì)量是-1的工件最接近標(biāo)準(zhǔn)工件.故選D.10、D【解題分析】

先利用互余計算出∠FDB=28°,再根據(jù)平行線的性質(zhì)得∠CBD=∠FDB=28°,接著根據(jù)折疊的性質(zhì)得∠FBD=∠CBD=28°,然后利用三角形外角性質(zhì)計算∠DFE的度數(shù).【題目詳解】解:∵四邊形ABCD為矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿對角線BD折疊,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故選D.【題目點(diǎn)撥】本題考查了平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯角相等.二、填空題(本大題共6個小題,每小題3分,共18分)11、x=-2【解題分析】方程兩邊同時平方得:,解得:,檢驗(yàn):(1)當(dāng)x=3時,方程左邊=-3,右邊=3,左邊右邊,因此3不是原方程的解;(2)當(dāng)x=-2時,方程左邊=2,右邊=2,左邊=右邊,因此-2是方程的解.∴原方程的解為:x=-2.故答案為:-2.點(diǎn)睛:(1)根號下含有未知數(shù)的方程叫無理方程,解無理方程的基本思想是化“無理方程”為“有理方程”;(2)解無理方程和解分式方程相似,求得未知數(shù)的值之后要檢驗(yàn),看所得結(jié)果是原方程的解還是增根.12、-1【解題分析】分析:解出不等式組的解集,與已知解集-1<x<1比較,可以求出a、b的值,然后相加求出2009次方,可得最終答案.詳解:由不等式得x>a+2,x<b,∵-1<x<1,∴a+2=-1,b=1∴a=-3,b=2,∴(a+b)2009=(-1)2009=-1.故答案為-1.點(diǎn)睛:本題是已知不等式組的解集,求不等式中另一未知數(shù)的問題.可以先將另一未知數(shù)當(dāng)作已知處理,求出解集與已知解集比較,進(jìn)而求得零一個未知數(shù).13、(10,3)【解題分析】

根據(jù)折疊的性質(zhì)得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后設(shè)EC=x,則EF=DE=8-x,CF=10-6=4,根據(jù)勾股定理列方程求出EC可得點(diǎn)E的坐標(biāo).【題目詳解】∵四邊形AOCD為矩形,D的坐標(biāo)為(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折疊,使D落在BC上的點(diǎn)F處,∴AD=AF=10,DE=EF,在Rt△AOF中,OF==6,∴FC=10?6=4,設(shè)EC=x,則DE=EF=8?x,在Rt△CEF中,EF2=EC2+FC2,即(8?x)2=x2+42,解得x=3,即EC的長為3.∴點(diǎn)E的坐標(biāo)為(10,3).14、AC=BC.【解題分析】分析:添加AC=BC,根據(jù)三角形高的定義可得∠ADC=∠BEC=90°,再證明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.詳解:添加AC=BC,∵△ABC的兩條高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中∠BEC=∴△ADC≌△BEC(AAS),故答案為:AC=BC.點(diǎn)睛:此題主要考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.15、71【解題分析】分析:由題意∠ACB為直角,利用勾股定理求得外圍中一條邊,又由AC延伸一倍,從而求得風(fēng)車的一個輪子,進(jìn)一步求得四個.詳解:依題意,設(shè)“數(shù)學(xué)風(fēng)車”中的四個直角三角形的斜邊長為x,AC=y,則x2=4y2+52,∵△BCD的周長是30,∴x+2y+5=30則x=13,y=1.∴這個風(fēng)車的外圍周長是:4(x+y)=4×19=71.故答案是:71.點(diǎn)睛:本題考查了勾股定理在實(shí)際情況中的應(yīng)用,注意隱含的已知條件來解答此類題.16、y=-x+2(答案不唯一)【解題分析】①圖象經(jīng)過(1,1)點(diǎn);②當(dāng)x>1時.y隨x的增大而減小,這個函數(shù)解析式為y=-x+2,故答案為y=-x+2(答案不唯一).三、解答題(共8題,共72分)17、(1)i)證明見試題解析;ii);(2);(3).【解題分析】

(1)i)由∠ACE+∠ECB=45°,∠BCF+∠ECB=45°,得到∠ACE=∠BCF,又由于,故△CAE∽△CBF;ii)由,得到BF=,再由△CAE∽△CBF,得到∠CAE=∠CBF,進(jìn)一步可得到∠EBF=1°,從而有,解得;(2)連接BF,同理可得:∠EBF=1°,由,得到,,故,從而,得到,代入解方程即可;(3)連接BF,同理可得:∠EBF=1°,過C作CH⊥AB延長線于H,可得:,,故,從而有.【題目詳解】解:(1)i)∵∠ACE+∠ECB=45°,∠BCF+∠ECB=45°,∴∠ACE=∠BCF,又∵,∴△CAE∽△CBF;ii)∵,∴BF=,∵△CAE∽△CBF,∴∠CAE=∠CBF,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴,解得;(2)連接BF,同理可得:∠EBF=1°,∵,∴,,∴,∴,,∴,∴,解得;(3)連接BF,同理可得:∠EBF=1°,過C作CH⊥AB延長線于H,可得:,,∴,∴.【題目點(diǎn)撥】本題考查相似三角形的判定與性質(zhì);正方形的性質(zhì);矩形的性質(zhì);菱形的性質(zhì).18、(1);(2)①見解析;②;(3)存在點(diǎn)B,使△MBF的周長最小.△MBF周長的最小值為11,直線l的解析式為.【解題分析】

(1)用待定系數(shù)法將已知兩點(diǎn)的坐標(biāo)代入拋物線解析式即可解答.(2)①由于BC∥y軸,容易看出∠OFC=∠BCF,想證明∠BFC=∠OFC,可轉(zhuǎn)化為求證∠BFC=∠BCF,根據(jù)“等邊對等角”,也就是求證BC=BF,可作BD⊥y軸于點(diǎn)D,設(shè)B(m,),通過勾股定理用表示出的長度,與相等,即可證明.②用表示出點(diǎn)的坐標(biāo),運(yùn)用勾股定理表示出的長度,令,解關(guān)于的一元二次方程即可.(3)求折線或者三角形周長的最小值問題往往需要將某些線段代換轉(zhuǎn)化到一條直線上,再通過“兩點(diǎn)之間線段最短”或者“垂線段最短”等定理尋找最值.本題可過點(diǎn)M作MN⊥x軸于點(diǎn)N,交拋物線于點(diǎn)B1,過點(diǎn)B作BE⊥x軸于點(diǎn)E,連接B1F,通過第(2)問的結(jié)論將△MBF的邊轉(zhuǎn)化為,可以發(fā)現(xiàn),當(dāng)點(diǎn)運(yùn)動到位置時,△MBF周長取得最小值,根據(jù)求平面直角坐標(biāo)系里任意兩點(diǎn)之間的距離的方法代入點(diǎn)與的坐標(biāo)求出的長度,再加上即是△MBF周長的最小值;將點(diǎn)的橫坐標(biāo)代入二次函數(shù)求出,再聯(lián)立與的坐標(biāo)求出的解析式即可.【題目詳解】(1)解:將點(diǎn)(-2,2)和(4,5)分別代入,得:解得:∴拋物線的解析式為:.(2)①證明:過點(diǎn)B作BD⊥y軸于點(diǎn)D,設(shè)B(m,),∵BC⊥x軸,BD⊥y軸,F(xiàn)(0,2)∴BC=,BD=|m|,DF=∴BC=BF∴∠BFC=∠BCF又BC∥y軸,∴∠OFC=∠BCF∴∠BFC=∠OFC∴FC平分∠BFO.②(說明:寫一個給1分)(3)存在點(diǎn)B,使△MBF的周長最小.過點(diǎn)M作MN⊥x軸于點(diǎn)N,交拋物線于點(diǎn)B1,過點(diǎn)B作BE⊥x軸于點(diǎn)E,連接B1F由(2)知B1F=B1N,BF=BE∴△MB1F的周長=MF+MB1+B1F=MF+MB1+B1N=MF+MN△MBF的周長=MF+MB+BF=MF+MB+BE根據(jù)垂線段最短可知:MN<MB+BE∴當(dāng)點(diǎn)B在點(diǎn)B1處時,△MBF的周長最小∵M(jìn)(3,6),F(xiàn)(0,2)∴,MN=6∴△MBF周長的最小值=MF+MN=5+6=11將x=3代入,得:∴B1(3,)將F(0,2)和B1(3,)代入y=kx+b,得:,解得:∴此時直線l的解析式為:.【題目點(diǎn)撥】本題綜合考查了二次函數(shù)與一次函數(shù)的圖象與性質(zhì),等腰三角形的性質(zhì),動點(diǎn)與最值問題等,熟練掌握各個知識點(diǎn),結(jié)合圖象作出合理輔助線,進(jìn)行適當(dāng)?shù)霓D(zhuǎn)化是解答關(guān)鍵.19、(1)①3,1;②最小值為3;(1)【解題分析】

(1)①根據(jù)點(diǎn)Q與點(diǎn)P之間的“直距”的定義計算即可;②如圖3中,由題意,當(dāng)DCO為定值時,點(diǎn)C的軌跡是以點(diǎn)O為中心的正方形(如左邊圖),當(dāng)DCO=3時,該正方形的一邊與直線y=-x+3重合(如右邊圖),此時DCO定值最小,最小值為3;(1)如圖4中,平移直線y=1x+4,當(dāng)平移后的直線與⊙O在左邊相切時,設(shè)切點(diǎn)為E,作EF∥x軸交直線y=1x+4于F,此時DEF定值最?。弧绢}目詳解】解:(1)①如圖1中,觀察圖象可知DAO=1+1=3,DBO=1,故答案為3,1.②(i)當(dāng)點(diǎn)C在第一象限時(),根據(jù)題意可知,為定值,設(shè)點(diǎn)C坐標(biāo)為,則,即此時為3;(ii)當(dāng)點(diǎn)C在坐標(biāo)軸上時(,),易得為3;(ⅲ)當(dāng)點(diǎn)C在第二象限時(),可得;(ⅳ)當(dāng)點(diǎn)C在第四象限時(),可得;綜上所述,當(dāng)時,取得最小值為3;(1)如解圖②,可知點(diǎn)F有兩種情形,即過點(diǎn)E分別作y軸、x軸的垂線與直線分別交于、;如解圖③,平移直線使平移后的直線與相切,平移后的直線與x軸交于點(diǎn)G,設(shè)直線與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,觀察圖象,此時即為點(diǎn)E與點(diǎn)F之間“直距”的最小值.連接OE,易證,∴,在中由勾股定理得,∴,解得,∴.【題目點(diǎn)撥】本題考查一次函數(shù)的綜合題,點(diǎn)Q與點(diǎn)P之間的“直距”的定義,圓的有關(guān)知識,正方形的性質(zhì)等知識,解題的關(guān)鍵是理解題意,學(xué)會利用新的定義,解決問題,屬于中考壓軸題.失分原因第(1)問(1)不能根據(jù)定義找出AO、BO的“直距”分屬哪種情形;(1)不能找出點(diǎn)C在不同位置時,的取值情況,并找到的最小值第(1)問(1)不能根據(jù)定義正確找出點(diǎn)E與點(diǎn)F之間“直距”取最小值時點(diǎn)E、F的位置;(1)不能想到由相似求出GO的值20、(1)詳見解析;(2)詳見解析;(3)圖見解析,點(diǎn)P坐標(biāo)為(2,0).【解題分析】

(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C平移后的對應(yīng)點(diǎn)的位置,然后順次連接即可;(2))找出點(diǎn)A、B、C關(guān)于原點(diǎn)O的對稱點(diǎn)的位置,然后順次連接即可;(3)找出A的對稱點(diǎn)A′,連接BA′,與x軸交點(diǎn)即為P.【題目詳解】(1)如圖1所示,△A1B1C1,即為所求:(2)如圖2所示,△A2B2C2,即為所求:(3)找出A的對稱點(diǎn)A′(1,﹣1),連接BA′,與x軸交點(diǎn)即為P;如圖3所示,點(diǎn)P即為所求,點(diǎn)P坐標(biāo)為(2,0).【題目點(diǎn)撥】本題考查作圖-旋轉(zhuǎn)變換,平移變換,軸對稱最短問題等知識,得出對應(yīng)點(diǎn)位置是解題關(guān)鍵.21、解:作AB的垂直平分線,以點(diǎn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論