山東省東明縣2024屆中考數(shù)學(xué)五模試卷含解析_第1頁(yè)
山東省東明縣2024屆中考數(shù)學(xué)五模試卷含解析_第2頁(yè)
山東省東明縣2024屆中考數(shù)學(xué)五模試卷含解析_第3頁(yè)
山東省東明縣2024屆中考數(shù)學(xué)五模試卷含解析_第4頁(yè)
山東省東明縣2024屆中考數(shù)學(xué)五模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省東明縣2024屆中考數(shù)學(xué)五模試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,AB是⊙O的直徑,點(diǎn)E為BC的中點(diǎn),AB=4,∠BED=120°,則圖中陰影部分的面積之和為()A.1 B. C. D.2.如圖所示,若將△ABO繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°后得到△A1B1O,則A點(diǎn)的對(duì)應(yīng)點(diǎn)A1點(diǎn)的坐標(biāo)是()A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)3.如圖,已知直線PQ⊥MN于點(diǎn)O,點(diǎn)A,B分別在MN,PQ上,OA=1,OB=2,在直線MN或直線PQ上找一點(diǎn)C,使△ABC是等腰三角形,則這樣的C點(diǎn)有()A.3個(gè)B.4個(gè)C.7個(gè)D.8個(gè)4.下列計(jì)算正確的是()A.﹣a4b÷a2b=﹣a2bB.(a﹣b)2=a2﹣b2C.a(chǎn)2?a3=a6D.﹣3a2+2a2=﹣a25.下列各點(diǎn)中,在二次函數(shù)的圖象上的是()A. B. C. D.6.如果向北走6km記作+6km,那么向南走8km記作()A.+8kmB.﹣8kmC.+14kmD.﹣2km7.如圖釣魚竿AC長(zhǎng)6m,露在水面上的魚線BC長(zhǎng)3m,釣者想看看魚釣上的情況,把魚竿AC逆時(shí)針轉(zhuǎn)動(dòng)15°到AC′的位置,此時(shí)露在水面上的魚線B'C'長(zhǎng)度是()A.3m B.m C.m D.4m8.如圖,A、B、C是小正方形的頂點(diǎn),且每個(gè)小正方形的邊長(zhǎng)為1,則tan∠BAC的值為()A. B.1 C. D.9.如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連接AO并延長(zhǎng)交⊙O于點(diǎn)E,連接EC,若AB=8,CD=2,則cos∠ECB為()A. B. C. D.10.已知,則的值是A.60 B.64 C.66 D.72二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在菱形ABCD中,于E,,,則菱形ABCD的面積是______.12.如圖,一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點(diǎn),與x軸交與點(diǎn)C,若tan∠AOC=,則k的值為_(kāi)____.13.如圖,某數(shù)學(xué)興趣小組將邊長(zhǎng)為5的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細(xì)),則所得的扇形ABD的面積為_(kāi)____.14.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三點(diǎn)都在y=的圖象上,則yl,y2,y3的大小關(guān)系是_____.(用“<”號(hào)填空)15.如圖,長(zhǎng)方體的底面邊長(zhǎng)分別為1cm和3cm,高為6cm.如果用一根細(xì)線從點(diǎn)A開(kāi)始經(jīng)過(guò)4個(gè)側(cè)面纏繞一圈到達(dá)點(diǎn)B,那么所用細(xì)線最短需要_____cm.16.已知:如圖,AB是⊙O的直徑,弦EF⊥AB于點(diǎn)D,如果EF=8,AD=2,則⊙O半徑的長(zhǎng)是_____.17.如圖,菱形ABCD的面積為120cm2,正方形AECF的面積為50cm2,則菱形的邊長(zhǎng)____cm.三、解答題(共7小題,滿分69分)18.(10分)在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(8,0)、點(diǎn)B(0,4),點(diǎn)C、D分別是邊OA、AB的中點(diǎn).將△ACD繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn),得△AC′D′,記旋轉(zhuǎn)角為α.(I)如圖①,連接BD′,當(dāng)BD′∥OA時(shí),求點(diǎn)D′的坐標(biāo);(II)如圖②,當(dāng)α=60°時(shí),求點(diǎn)C′的坐標(biāo);(III)當(dāng)點(diǎn)B,D′,C′共線時(shí),求點(diǎn)C′的坐標(biāo)(直接寫出結(jié)果即可).19.(5分)我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)20.(8分)在一個(gè)不透明的盒子中,裝有3個(gè)分別寫有數(shù)字1,2,3的小球,他們的形狀、大小、質(zhì)地完全相同,攪拌均勻后,先從盒子里隨機(jī)抽取1個(gè)小球,記下小球上的數(shù)字后放回盒子,攪拌均勻后再隨機(jī)取出1個(gè)小球,再記下小球上的數(shù)字.(1)用列表法或樹(shù)狀圖法寫出所有可能出現(xiàn)的結(jié)果;(2)求兩次取出的小球上的數(shù)字之和為奇數(shù)的概率P.21.(10分)投資1萬(wàn)元圍一個(gè)矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長(zhǎng)24m,平行于墻的邊的費(fèi)用為200元/m,垂直于墻的邊的費(fèi)用為150元/m,設(shè)平行于墻的邊長(zhǎng)為xm設(shè)垂直于墻的一邊長(zhǎng)為ym,直接寫出y與x之間的函數(shù)關(guān)系式;若菜園面積為384m2,求x的值;求菜園的最大面積.22.(10分)“食品安全”受到全社會(huì)的廣泛關(guān)注,我區(qū)兼善中學(xué)對(duì)部分學(xué)生就食品安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面的兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:(1)接受問(wèn)卷調(diào)查的學(xué)生共有人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為°;(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;(3)若對(duì)食品安全知識(shí)達(dá)到“了解”程度的學(xué)生中,男、女生的比例恰為2:3,現(xiàn)從中隨機(jī)抽取2人參加食品安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.23.(12分)如圖,將等腰直角三角形紙片ABC對(duì)折,折痕為CD.展平后,再將點(diǎn)B折疊在邊AC上(不與A、C重合),折痕為EF,點(diǎn)B在AC上的對(duì)應(yīng)點(diǎn)為M,設(shè)CD與EM交于點(diǎn)P,連接PF.已知BC=1.(1)若M為AC的中點(diǎn),求CF的長(zhǎng);(2)隨著點(diǎn)M在邊AC上取不同的位置,①△PFM的形狀是否發(fā)生變化?請(qǐng)說(shuō)明理由;②求△PFM的周長(zhǎng)的取值范圍.24.(14分)某學(xué)校“智慧方園”數(shù)學(xué)社團(tuán)遇到這樣一個(gè)題目:如圖1,在△ABC中,點(diǎn)O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長(zhǎng).經(jīng)過(guò)社團(tuán)成員討論發(fā)現(xiàn),過(guò)點(diǎn)B作BD∥AC,交AO的延長(zhǎng)線于點(diǎn)D,通過(guò)構(gòu)造△ABD就可以解決問(wèn)題(如圖2).請(qǐng)回答:∠ADB=°,AB=.請(qǐng)參考以上解決思路,解決問(wèn)題:如圖3,在四邊形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長(zhǎng).

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解題分析】連接AE,OD,OE.∵AB是直徑,∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD.∴△AOD是等邊三角形.∴∠A=60°.又∵點(diǎn)E為BC的中點(diǎn),∠AED=90°,∴AB=AC.∴△ABC是等邊三角形,∴△EDC是等邊三角形,且邊長(zhǎng)是△ABC邊長(zhǎng)的一半2,高是.∴∠BOE=∠EOD=60°,∴和弦BE圍成的部分的面積=和弦DE圍成的部分的面積.∴陰影部分的面積=.故選C.2、A【解題分析】

由題意可知,點(diǎn)A與點(diǎn)A1關(guān)于原點(diǎn)成中心對(duì)稱,根據(jù)圖象確定點(diǎn)A的坐標(biāo),即可求得點(diǎn)A1的坐標(biāo).【題目詳解】由題意可知,點(diǎn)A與點(diǎn)A1關(guān)于原點(diǎn)成中心對(duì)稱,∵點(diǎn)A的坐標(biāo)是(﹣3,2),∴點(diǎn)A關(guān)于點(diǎn)O的對(duì)稱點(diǎn)A'點(diǎn)的坐標(biāo)是(3,﹣2).故選A.【題目點(diǎn)撥】本題考查了中心對(duì)稱的性質(zhì)及關(guān)于原點(diǎn)對(duì)稱點(diǎn)的坐標(biāo)的特征,熟知中心對(duì)稱的性質(zhì)及關(guān)于原點(diǎn)對(duì)稱點(diǎn)的坐標(biāo)的特征是解決問(wèn)題的關(guān)鍵.3、D【解題分析】試題分析:根據(jù)等腰三角形的判定分類別分別找尋,分AB可能為底,可能是腰進(jìn)行分析.解:使△ABC是等腰三角形,當(dāng)AB當(dāng)?shù)讜r(shí),則作AB的垂直平分線,交PQ,MN的有兩點(diǎn),即有兩個(gè)三角形.當(dāng)讓AB當(dāng)腰時(shí),則以點(diǎn)A為圓心,AB為半徑畫圓交PQ,MN有三點(diǎn),所以有三個(gè).當(dāng)以點(diǎn)B為圓心,AB為半徑畫圓,交PQ,MN有三點(diǎn),所以有三個(gè).所以共8個(gè).故選D.點(diǎn)評(píng):本題考查了等腰三角形的判定;解題的關(guān)鍵是要分情況而定,所以學(xué)生一定要思維嚴(yán)密,不可遺漏.4、D【解題分析】

根據(jù)各個(gè)選項(xiàng)中的式子可以計(jì)算出正確的結(jié)果,從而可以解答本題.【題目詳解】-aa-b2a2-3a故選:D.【題目點(diǎn)撥】考查整式的除法,完全平方公式,同底數(shù)冪相乘以及合并同類項(xiàng),比較基礎(chǔ),難度不大.5、D【解題分析】

將各選項(xiàng)的點(diǎn)逐一代入即可判斷.【題目詳解】解:當(dāng)x=1時(shí),y=-1,故點(diǎn)不在二次函數(shù)的圖象;當(dāng)x=2時(shí),y=-4,故點(diǎn)和點(diǎn)不在二次函數(shù)的圖象;當(dāng)x=-2時(shí),y=-4,故點(diǎn)在二次函數(shù)的圖象;故答案為:D.【題目點(diǎn)撥】本題考查了判斷一個(gè)點(diǎn)是否在二次函數(shù)圖象上,解題的關(guān)鍵是將點(diǎn)代入函數(shù)解析式.6、B【解題分析】

正負(fù)數(shù)的應(yīng)用,先判斷向北、向南是不是具有相反意義的量,再用正負(fù)數(shù)表示出來(lái)【題目詳解】解:向北和向南互為相反意義的量.若向北走6km記作+6km,那么向南走8km記作﹣8km.故選:B.【題目點(diǎn)撥】本題考查正負(fù)數(shù)在生活中的應(yīng)用.注意用正負(fù)數(shù)表示的量必須是具有相反意義的量.7、B【解題分析】

因?yàn)槿切蜛BC和三角形AB′C′均為直角三角形,且BC、B′C′都是我們所要求角的對(duì)邊,所以根據(jù)正弦來(lái)解題,求出∠CAB,進(jìn)而得出∠C′AB′的度數(shù),然后可以求出魚線B'C'長(zhǎng)度.【題目詳解】解:∵sin∠CAB=∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°=,解得:B′C′=3.故選:B.【題目點(diǎn)撥】此題主要考查了解直角三角形的應(yīng)用,解本題的關(guān)鍵是把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題.8、B【解題分析】

連接BC,由網(wǎng)格求出AB,BC,AC的長(zhǎng),利用勾股定理的逆定理得到△ABC為等腰直角三角形,即可求出所求.【題目詳解】如圖,連接BC,由網(wǎng)格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC為等腰直角三角形,∴∠BAC=45°,則tan∠BAC=1,故選B.【題目點(diǎn)撥】本題考查了銳角三角函數(shù)的定義,解直角三角形,以及勾股定理,熟練掌握勾股定理是解本題的關(guān)鍵.9、D【解題分析】

連接EB,設(shè)圓O半徑為r,根據(jù)勾股定理可求出半徑r=4,從而可求出EB的長(zhǎng)度,最后勾股定理即可求出CE的長(zhǎng)度.利用銳角三角函數(shù)的定義即可求出答案.【題目詳解】解:連接EB,由圓周角定理可知:∠B=90°,設(shè)⊙O的半徑為r,由垂徑定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:CE=2,∴cos∠ECB==,故選D.【題目點(diǎn)撥】本題考查垂徑定理,涉及勾股定理,垂直定理,解方程等知識(shí),綜合程度較高,屬于中等題型.10、A【解題分析】

將代入原式,計(jì)算可得.【題目詳解】解:當(dāng)時(shí),原式,故選A.【題目點(diǎn)撥】本題主要考查分式的加減法,解題的關(guān)鍵是熟練掌握完全平方公式.二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】

根據(jù)題意可求AD的長(zhǎng)度,即可得CD的長(zhǎng)度,根據(jù)菱形ABCD的面積=CD×AE,可求菱形ABCD的面積.【題目詳解】∵sinD=∴∴AD=11∵四邊形ABCD是菱形∴AD=CD=11∴菱形ABCD的面積=11×8=96cm1.故答案為:96cm1.【題目點(diǎn)撥】本題考查了菱形的性質(zhì),解直角三角形,熟練運(yùn)用菱形性質(zhì)解決問(wèn)題是本題的關(guān)鍵.12、1【解題分析】【分析】如圖,過(guò)點(diǎn)A作AD⊥x軸,垂足為D,根據(jù)題意設(shè)出點(diǎn)A的坐標(biāo),然后根據(jù)一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點(diǎn),可以求得a的值,進(jìn)而求得k的值即可.【題目詳解】如圖,過(guò)點(diǎn)A作AD⊥x軸,垂足為D,∵tan∠AOC==,∴設(shè)點(diǎn)A的坐標(biāo)為(1a,a),∵一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點(diǎn),∴a=1a﹣2,得a=1,∴1=,得k=1,故答案為:1.【題目點(diǎn)撥】本題考查了正切,反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,解答本題的關(guān)鍵是明確題意,找出所求問(wèn)題需要的條件,利用數(shù)形結(jié)合的思想解答.13、25【解題分析】試題解析:由題意14、y3<y1<y1【解題分析】

根據(jù)反比例函數(shù)的性質(zhì)k<0時(shí),在每個(gè)象限,y隨x的增大而增大,進(jìn)行比較即可.【題目詳解】解:k=-1<0,∴在每個(gè)象限,y隨x的增大而增大,∵-3<-1<0,∴0<y1<y1.又∵1>0∴y3<0∴y3<y1<y1故答案為:y3<y1<y1【題目點(diǎn)撥】本題考查的是反比例函數(shù)的性質(zhì),理解性質(zhì):當(dāng)k>0時(shí),在每個(gè)象限,y隨x的增大而減小,k<0時(shí),在每個(gè)象限,y隨x的增大而增大是解題的關(guān)鍵.15、1【解題分析】

要求所用細(xì)線的最短距離,需將長(zhǎng)方體的側(cè)面展開(kāi),進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果.【題目詳解】解:將長(zhǎng)方體展開(kāi),連接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根據(jù)兩點(diǎn)之間線段最短,AB′==1cm.故答案為1.考點(diǎn):平面展開(kāi)-最短路徑問(wèn)題.16、1.【解題分析】試題解析:連接OE,如下圖所示,則:OE=OA=R,∵AB是⊙O的直徑,弦EF⊥AB,∴ED=DF=4,∵OD=OA-AD,∴OD=R-2,在Rt△ODE中,由勾股定理可得:OE2=OD2+ED2,∴R2=(R-2)2+42,∴R=1.考點(diǎn):1.垂徑定理;2.解直角三角形.17、13【解題分析】試題解析:因?yàn)檎叫蜛ECF的面積為50cm2,所以因?yàn)榱庑蜛BCD的面積為120cm2,所以所以菱形的邊長(zhǎng)故答案為13.三、解答題(共7小題,滿分69分)18、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②C′(,﹣)【解題分析】

(I)如圖①,當(dāng)OB∥AC′,四邊形OBC′A是平行四邊形,只要證明B、C′、D′共線即可解決問(wèn)題,再根據(jù)對(duì)稱性確定D″的坐標(biāo);(II)如圖②,當(dāng)α=60°時(shí),作C′K⊥AC于K.解直角三角形求出OK,C′K即可解決問(wèn)題;(III)分兩種情形分別求解即可解決問(wèn)題;【題目詳解】解:(I)如圖①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴當(dāng)OB∥AC′,四邊形OBC′A是平行四邊形,∵∠AOB=90°,∴四邊形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共線,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=OB=2,∴D′(10,4),根據(jù)對(duì)稱性可知,點(diǎn)D″在線段BC′上時(shí),D″(6,4)也滿足條件.綜上所述,滿足條件的點(diǎn)D坐標(biāo)(10,4)或(6,4).(II)如圖②,當(dāng)α=60°時(shí),作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,C′K=2,∴OK=6,∴C′(6,2).(III)①如圖③中,當(dāng)B、C′、D′共線時(shí),由(Ⅰ)可知,C′(8,4).②如圖④中,當(dāng)B、C′、D′共線時(shí),BD′交OA于F,易證△BOF≌△AC′F,∴OF=FC′,設(shè)OF=FC′=x,在Rt△ABC′中,BC′==8,在RT△BOF中,OB=4,OF=x,BF=8﹣x,∴(8﹣x)2=42+x2,解得x=3,∴OF=FC′=3,BF=5,作C′K⊥OA于K,∵OB∥KC′,∴==,∴==,∴KC′=,KF=,∴OK=,∴C′(,﹣).【題目點(diǎn)撥】本題考查三角形綜合題、旋轉(zhuǎn)變換、矩形的判定和性質(zhì)、平行線的性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是靈活應(yīng)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)用分類討論的思想思考問(wèn)題,屬于中考?jí)狠S題.19、(1)證明見(jiàn)解析;(2)四邊形EFGH是菱形,證明見(jiàn)解析;(3)四邊形EFGH是正方形.【解題分析】

(1)如圖1中,連接BD,根據(jù)三角形中位線定理只要證明EH∥FG,EH=FG即可.(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據(jù)平行線的性質(zhì)即可證明.【題目詳解】(1)證明:如圖1中,連接BD.∵點(diǎn)E,H分別為邊AB,DA的中點(diǎn),∴EH∥BD,EH=BD,∵點(diǎn)F,G分別為邊BC,CD的中點(diǎn),∴FG∥BD,F(xiàn)G=BD,∴EH∥FG,EH=GF,∴中點(diǎn)四邊形EFGH是平行四邊形.(2)四邊形EFGH是菱形.證明:如圖2中,連接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵點(diǎn)E,F(xiàn),G分別為邊AB,BC,CD的中點(diǎn),∴EF=AC,F(xiàn)G=BD,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.(3)四邊形EFGH是正方形.證明:如圖2中,設(shè)AC與BD交于點(diǎn)O.AC與PD交于點(diǎn)M,AC與EH交于點(diǎn)N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四邊形EFGH是菱形,∴四邊形EFGH是正方形.考點(diǎn):平行四邊形的判定與性質(zhì);中點(diǎn)四邊形.20、(1見(jiàn)解析;(2).【解題分析】

(1)根據(jù)題意先畫出樹(shù)狀圖,得出所有可能出現(xiàn)的結(jié)果數(shù);

(2)根據(jù)(1)可得共有9種情況,兩次取出小球上的數(shù)字和為奇數(shù)的情況,再根據(jù)概率公式即可得出答案.【題目詳解】(1)列表得,(2)兩次取出的小球上的數(shù)字之和為奇數(shù)的共有4種,∴P兩次取出的小球上數(shù)字之和為奇數(shù)的概率P=.【題目點(diǎn)撥】此題可以采用列表法或者采用樹(shù)狀圖法,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.樹(shù)狀圖法適用于兩步或兩步以上完成的事件.解題時(shí)還要注意是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)見(jiàn)詳解;(2)x=18;(3)416m2.【解題分析】

(1)根據(jù)“垂直于墻的長(zhǎng)度=可得函數(shù)解析式;(2)根據(jù)矩形的面積公式列方程求解可得;(3)根據(jù)矩形的面積公式列出總面積關(guān)于x的函數(shù)解析式,配方成頂點(diǎn)式后利用二次函數(shù)的性質(zhì)求解可得.【題目詳解】(1)根據(jù)題意知,y==-x+;(2)根據(jù)題意,得(-x+)x=384,解得x=18或x=32.∵墻的長(zhǎng)度為24m,∴x=18.(3)設(shè)菜園的面積是S,則S=(-x+)x=-x2+x=-(x-25)2+.∵-<0,∴當(dāng)x<25時(shí),S隨x的增大而增大.∵x≤24,∴當(dāng)x=24時(shí),S取得最大值,最大值為416.答:菜園的最大面積為416m2.【題目點(diǎn)撥】本題主要考查二次函數(shù)和一元二次方程的應(yīng)用,解題的關(guān)鍵是將實(shí)際問(wèn)題轉(zhuǎn)化為一元二次方程和二次函數(shù)的問(wèn)題.22、(1)60,1°.(2)補(bǔ)圖見(jiàn)解析;(3)【解題分析】

(1)根據(jù)了解很少的人數(shù)和所占的百分百求出抽查的總?cè)藬?shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對(duì)應(yīng)扇形的圓心角的度數(shù);(2)用調(diào)查的總?cè)藬?shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補(bǔ)全統(tǒng)計(jì)圖;(3)根據(jù)題意先畫出樹(shù)狀圖,再根據(jù)概率公式即可得出答案.【題目詳解】(1)接受問(wèn)卷調(diào)查的學(xué)生共有30÷50%=60(人),扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為360°×=1°,故答案為60,1.(2)了解的人數(shù)有:60﹣15﹣30﹣10=5(人),補(bǔ)圖如下:(3)畫樹(shù)狀圖得:?∵共有20種等可能的結(jié)果,恰好抽到1個(gè)男生和1個(gè)女生的有12種情況,∴恰好抽到1個(gè)男生和1個(gè)女生的概率為=.【題目點(diǎn)撥】此題考查了條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖以及用列表法或樹(shù)狀圖法求概率,讀懂題意,根據(jù)題意求出總?cè)藬?shù)是解題的關(guān)鍵;概率=所求情況數(shù)與總情況數(shù)之比.23、(1)CF=;(2)①△PFM的形狀是等腰直角三角形,不會(huì)發(fā)生變化,理由見(jiàn)解析;②△PFM的周長(zhǎng)滿足:2+2<(1+)y<1+1.【解題分析】

(1)由折疊的性質(zhì)可知,F(xiàn)B=FM,設(shè)CF=x,則FB=FM=1﹣x,在Rt△CFM中,根據(jù)FM2=CF2+CM2,構(gòu)建方程即可解決問(wèn)題;(2)①△PFM的形狀是等腰直角三角形,想辦法證明△POF∽△MOC,可得∠PFO=∠MCO=15°,延長(zhǎng)即可解決問(wèn)題;②設(shè)FM=y,由勾股定理可知:PF=PM=y,可得△PFM的周長(zhǎng)=(1+)y,由2<y<1,可得結(jié)論.【題目詳解】(1)∵M(jìn)為AC的中點(diǎn),∴CM=AC=BC=2,由折疊的性質(zhì)可知,F(xiàn)B=FM,設(shè)CF=x,則FB=FM=1﹣x,在Rt△CFM中,F(xiàn)M2=CF2+CM2,即(1﹣x)2=x2+22,解得,x=,即CF=;(2)①△PFM的形狀是等腰直角三角形,不會(huì)發(fā)生變化,理由如下:由折疊的性質(zhì)可知,∠PMF=∠B=15°,∵CD是中垂線,∴∠ACD=∠DCF=15°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴=,∴=,∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,∴∠AEM=∠CMF,∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論