版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
遼寧省燈塔市市級名校2024屆中考數(shù)學(xué)全真模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.甲、乙兩人加工一批零件,甲完成240個零件與乙完成200個零件所用的時間相同,已知甲比乙每天多完成8個零件.設(shè)乙每天完成x個零件,依題意下面所列方程正確的是()A. B.C. D.2.在平面直角坐標(biāo)系中,將點P(﹣4,2)繞原點O順時針旋轉(zhuǎn)90°,則其對應(yīng)點Q的坐標(biāo)為()A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)3.下列博物院的標(biāo)識中不是軸對稱圖形的是()A. B.C. D.4.如圖,四邊形ABCD是邊長為1的正方形,動點E、F分別從點C,D出發(fā),以相同速度分別沿CB,DC運動(點E到達C時,兩點同時停止運動).連接AE,BF交于點P,過點P分別作PM∥CD,PN∥BC,則線段MN的長度的最小值為()A. B. C. D.15.據(jù)調(diào)查,某班20為女同學(xué)所穿鞋子的尺碼如表所示,尺碼(碼)3435363738人數(shù)251021則鞋子尺碼的眾數(shù)和中位數(shù)分別是()A.35碼,35碼 B.35碼,36碼 C.36碼,35碼 D.36碼,36碼6.已知在一個不透明的口袋中有4個形狀、大小、材質(zhì)完全相同的球,其中1個紅色球,3個黃色球.從口袋中隨機取出一個球(不放回),接著再取出一個球,則取出的兩個都是黃色球的概率為()A.34 B.23 C.97.據(jù)統(tǒng)計,某住宅樓30戶居民五月份最后一周每天實行垃圾分類的戶數(shù)依次是:27,30,29,25,26,28,29,那么這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.25和30 B.25和29 C.28和30 D.28和298.如圖,菱形ABCD中,E.F分別是AB、AC的中點,若EF=3,則菱形ABCD的周長是()A.12 B.16 C.20 D.249.某班組織了針對全班同學(xué)關(guān)于“你最喜歡的一項體育活動”的問卷調(diào)查后,繪制出頻數(shù)分布直方圖,由圖可知,下列結(jié)論正確的是()A.最喜歡籃球的人數(shù)最多 B.最喜歡羽毛球的人數(shù)是最喜歡乒乓球人數(shù)的兩倍C.全班共有50名學(xué)生 D.最喜歡田徑的人數(shù)占總?cè)藬?shù)的10%10.若一元二次方程x2﹣2x+m=0有兩個不相同的實數(shù)根,則實數(shù)m的取值范圍是()A.m≥1 B.m≤1 C.m>1 D.m<1二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在ABC中,AB=AC=6,∠BAC=90°,點D、E為BC邊上的兩點,分別沿AD、AE折疊,B、C兩點重合于點F,若DE=5,則AD的長為_____.12.化簡;÷(﹣1)=______.13.(2016遼寧省沈陽市)如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是______.14.如圖所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,點E、F分別在菱形的邊BC、CD上滑動,且E、F不與B、C、D重合.當(dāng)點E、F在BC、CD上滑動時,則△CEF的面積最大值是____.15.對于函數(shù)y=,當(dāng)函數(shù)y﹤-3時,自變量x的取值范圍是____________.16.分式方程x2x-1=1-217.如圖,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分線分別交AB、BC于D、E,則△ACD的周長為cm.三、解答題(共7小題,滿分69分)18.(10分)如圖,AD是⊙O的直徑,AB為⊙O的弦,OP⊥AD,OP與AB的延長線交于點P,過B點的切線交OP于點C.求證:∠CBP=∠ADB.若OA=2,AB=1,求線段BP的長.19.(5分)如圖,中,于,點分別是的中點.(1)求證:四邊形是菱形(2)如果,求四邊形的面積20.(8分)已知關(guān)于x的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0有兩個不相等的實數(shù)根.求k的取值范圍;寫出一個滿足條件的k的值,并求此時方程的根.21.(10分)現(xiàn)有一次函數(shù)y=mx+n和二次函數(shù)y=mx2+nx+1,其中m≠0,若二次函數(shù)y=mx2+nx+1經(jīng)過點(2,0),(3,1),試分別求出兩個函數(shù)的解析式.若一次函數(shù)y=mx+n經(jīng)過點(2,0),且圖象經(jīng)過第一、三象限.二次函數(shù)y=mx2+nx+1經(jīng)過點(a,y1)和(a+1,y2),且y1>y2,請求出a的取值范圍.若二次函數(shù)y=mx2+nx+1的頂點坐標(biāo)為A(h,k)(h≠0),同時二次函數(shù)y=x2+x+1也經(jīng)過A點,已知﹣1<h<1,請求出m的取值范圍.22.(10分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,點D是射線CB上的一個動點,△ADE是等邊三角形,點F是AB的中點,連接EF.(1)如圖,點D在線段CB上時,①求證:△AEF≌△ADC;②連接BE,設(shè)線段CD=x,BE=y,求y2﹣x2的值;(2)當(dāng)∠DAB=15°時,求△ADE的面積.23.(12分)計算:sin30°﹣+(π﹣4)0+|﹣|.24.(14分)先化簡,再求值:,其中x是滿足不等式﹣(x﹣1)≥的非負整數(shù)解.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】
根據(jù)題意設(shè)出未知數(shù),根據(jù)甲所用的時間=乙所用的時間,用時間列出分式方程即可.【題目詳解】設(shè)乙每天完成x個零件,則甲每天完成(x+8)個.即得,,故選B.【題目點撥】找出甲所用的時間=乙所用的時間這個關(guān)系式是本題解題的關(guān)鍵.2、A【解題分析】
首先求出∠MPO=∠QON,利用AAS證明△PMO≌△ONQ,即可得到PM=ON,OM=QN,進而求出Q點坐標(biāo).【題目詳解】作圖如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P點坐標(biāo)為(﹣4,2),∴Q點坐標(biāo)為(2,4),故選A.【題目點撥】此題主要考查了旋轉(zhuǎn)的性質(zhì),以及全等三角形的判定和性質(zhì),關(guān)鍵是掌握旋轉(zhuǎn)后對應(yīng)線段相等.3、A【解題分析】
如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,對題中選項進行分析即可.【題目詳解】A、不是軸對稱圖形,符合題意;B、是軸對稱圖形,不合題意;C、是軸對稱圖形,不合題意;D、是軸對稱圖形,不合題意;故選:A.【題目點撥】此題考查軸對稱圖形的概念,解題的關(guān)鍵在于利用軸對稱圖形的概念判斷選項正誤4、B【解題分析】分析:由于點P在運動中保持∠APD=90°,所以點P的路徑是一段以AD為直徑的弧,設(shè)AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,再由勾股定理可得QC的長,再求CP即可.詳解:由于點P在運動中保持∠APD=90°,∴點P的路徑是一段以AD為直徑的弧,設(shè)AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,在Rt△QDC中,QC=,∴CP=QC-QP=,故選B.點睛:本題主要考查的是圓的相關(guān)知識和勾股定理,屬于中等難度的題型.解決這個問題的關(guān)鍵是根據(jù)圓的知識得出點P的運動軌跡.5、D【解題分析】
眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).【題目詳解】數(shù)據(jù)36出現(xiàn)了10次,次數(shù)最多,所以眾數(shù)為36,一共有20個數(shù)據(jù),位置處于中間的數(shù)是:36,36,所以中位數(shù)是(36+36)÷2=36.故選D.【題目點撥】考查中位數(shù)與眾數(shù),掌握眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù)是解題的關(guān)鍵.6、D【解題分析】試題分析:列舉出所有情況,看取出的兩個都是黃色球的情況數(shù)占總情況數(shù)的多少即可.試題解析:畫樹狀圖如下:共有12種情況,取出2個都是黃色的情況數(shù)有6種,所以概率為12故選D.考點:列表法與樹狀法.7、D【解題分析】【分析】根據(jù)中位數(shù)和眾數(shù)的定義進行求解即可得答案.【題目詳解】對這組數(shù)據(jù)重新排列順序得,25,26,27,28,29,29,30,處于最中間是數(shù)是28,∴這組數(shù)據(jù)的中位數(shù)是28,在這組數(shù)據(jù)中,29出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)是29,故選D.【題目點撥】本題考查了中位數(shù)和眾數(shù)的概念,熟練掌握眾數(shù)和中位數(shù)的概念是解題的關(guān)鍵.一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù),一組數(shù)據(jù)按從小到大(或從大到?。┡判蚝螅挥谧钪虚g的數(shù)(或中間兩數(shù)的平均數(shù))是這組數(shù)據(jù)的中位數(shù).8、D【解題分析】
根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求出,再根據(jù)菱形的周長公式列式計算即可得解.【題目詳解】、分別是、的中點,是的中位線,,菱形的周長.故選:.【題目點撥】本題主要考查了菱形的四邊形都相等,三角形的中位線平行于第三邊并且等于第三邊的一半,求出菱形的邊長是解題的關(guān)鍵.9、C【解題分析】【分析】觀察直方圖,根據(jù)直方圖中提供的數(shù)據(jù)逐項進行分析即可得.【題目詳解】觀察直方圖,由圖可知:A.最喜歡足球的人數(shù)最多,故A選項錯誤;B.最喜歡羽毛球的人數(shù)是最喜歡田徑人數(shù)的兩倍,故B選項錯誤;C.全班共有12+20+8+4+6=50名學(xué)生,故C選項正確;D.最喜歡田徑的人數(shù)占總?cè)藬?shù)的=8%,故D選項錯誤,故選C.【題目點撥】本題考查了頻數(shù)分布直方圖,從直方圖中得到必要的信息進行解題是關(guān)鍵.10、D【解題分析】分析:根據(jù)方程的系數(shù)結(jié)合根的判別式△>0,即可得出關(guān)于m的一元一次不等式,解之即可得出實數(shù)m的取值范圍.詳解:∵方程有兩個不相同的實數(shù)根,∴解得:m<1.故選D.點睛:本題考查了根的判別式,牢記“當(dāng)△>0時,方程有兩個不相等的實數(shù)根”是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、或【解題分析】
過點A作AG⊥BC,垂足為G,根據(jù)等腰直角三角形的性質(zhì)可得AG=BG=CG=6,設(shè)BD=x,則DF=BD=x,EF=7-x,然后利用勾股定理可得到關(guān)于x的方程,從而求得DG的長,繼而可求得AD的長.【題目詳解】如圖所示,過點A作AG⊥BC,垂足為G,∵AB=AC=6,∠BAC=90°,∴BC==12,∵AB=AC,AG⊥BC,∴AG=BG=CG=6,設(shè)BD=x,則EC=12-DE-BD=12-5-x=7-x,由翻折的性質(zhì)可知:∠DFA=∠B=∠C=∠AFE=45°,DB=DF,EF=FC,∴DF=x,EF=7-x,在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,解得:x=3或x=4,當(dāng)BD=3時,DG=3,AD=,當(dāng)BD=4時,DG=2,AD=,∴AD的長為或,故答案為:或.【題目點撥】本題考查了翻折的性質(zhì)、勾股定理的應(yīng)用、等腰直角三角形的性質(zhì),正確添加輔助線,靈活運用勾股定理是解題的關(guān)鍵.12、-【解題分析】
直接利用分式的混合運算法則即可得出.【題目詳解】原式,,,.故答案為.【題目點撥】此題主要考查了分式的化簡,正確掌握運算法則是解題關(guān)鍵.13、或.【解題分析】由圖可知,在△OMN中,∠OMN的度數(shù)是一個定值,且∠OMN不為直角.故當(dāng)∠ONM=90°或∠MON=90°時,△OMN是直角三角形.因此,本題需要按以下兩種情況分別求解.(1)當(dāng)∠ONM=90°時,則DN⊥BC.過點E作EF⊥BC,垂足為F.(如圖)∵在Rt△ABC中,∠A=90°,AB=AC,∴∠C=45°,∵BC=20,∴在Rt△ABC中,,∵DE是△ABC的中位線,∴,∴在Rt△CFE中,,.∵BM=3,BC=20,F(xiàn)C=5,∴MF=BC-BM-FC=20-3-5=12.∵EF=5,MF=12,∴在Rt△MFE中,,∵DE是△ABC的中位線,BC=20,∴,DE∥BC,∴∠DEM=∠EMF,即∠DEO=∠EMF,∴,∴在Rt△ODE中,.(2)當(dāng)∠MON=90°時,則DN⊥ME.過點E作EF⊥BC,垂足為F.(如圖)∵EF=5,MF=12,∴在Rt△MFE中,,∴在Rt△MFE中,,∵∠DEO=∠EMF,∴,∵DE=10,∴在Rt△DOE中,.綜上所述,DO的長是或.故本題應(yīng)填寫:或.點睛:在解決本題的過程中,難點在于對直角三角形中直角的分類討論;關(guān)鍵點是通過等角代換將一個在原直角三角形中不易求得的三角函數(shù)值轉(zhuǎn)換到一個容易求解的直角三角形中進行求解.另外,本題也可以用相似三角形的方法進行求解,不過利用銳角三角函數(shù)相對簡便.14、【解題分析】解:如圖,連接AC,∵四邊形ABCD為菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD為等邊三角形,∴∠4=60°,AC=AB.在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H點,則BH=2,∴S四邊形AECF=S△ABC=BC?AH=BC?=,由“垂線段最短”可知:當(dāng)正三角形AEF的邊AE與BC垂直時,邊AE最短,∴△AEF的面積會隨著AE的變化而變化,且當(dāng)AE最短時,正三角形AEF的面積會最小,又∵S△CEF=S四邊形AECF﹣S△AEF,則此時△CEF的面積就會最大,∴S△CEF=S四邊形AECF﹣S△AEF=﹣××=.故答案為:.點睛:本題主要考查了菱形的性質(zhì)、全等三角形判定與性質(zhì)及三角形面積的計算,根據(jù)△ABE≌△ACF,得出四邊形AECF的面積是定值是解題的關(guān)鍵.15、-<x<0【解題分析】
根據(jù)反比例函數(shù)的性質(zhì):y隨x的增大而減小去解答.【題目詳解】解:函數(shù)y=中,y隨x的增大而減小,當(dāng)函數(shù)y﹤-3時又函數(shù)y=中,故答案為:-<x<0.【題目點撥】此題重點考察學(xué)生對反比例函數(shù)性質(zhì)的理解,熟練掌握反比例函數(shù)性質(zhì)是解題的關(guān)鍵.16、x=﹣1.【解題分析】試題分析:分式方程變形后,去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.試題解析:去分母得:x=2x﹣1+2,解得:x=﹣1,經(jīng)檢驗x=﹣1是分式方程的解.考點:解分式方程.17、8【解題分析】試題分析:根據(jù)線段垂直平分線的性質(zhì)得,BD=CD,則AB=AD+CD,所以,△ACD的周長=AD+CD+AC=AB+AC,解答出即可解:∵DE是BC的垂直平分線,∴BD=CD,∴AB=AD+BD=AD+CD,∴△ACD的周長=AD+CD+AC=AB+AC=8cm;故答案為8考點:線段垂直平分線的性質(zhì)點評:本題主要考查了線段垂直平分線的性質(zhì)和三角形的周長,掌握線段的垂直平分線上的點到線段兩端點的距離相等三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)BP=1.【解題分析】分析:(1)連接OB,如圖,根據(jù)圓周角定理得到∠ABD=90°,再根據(jù)切線的性質(zhì)得到∠OBC=90°,然后利用等量代換進行證明;(2)證明△AOP∽△ABD,然后利用相似比求BP的長.詳(1)證明:連接OB,如圖,∵AD是⊙O的直徑,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC為切線,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴,即,∴BP=1.點睛:本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了圓周角定理和相似三角形的判定與性質(zhì).19、(1)證明見解析;(2).【解題分析】
(1)先根據(jù)直角三角形斜邊上中線的性質(zhì),得出DE=AB=AE,DF=AC=AF,再根據(jù)AB=AC,點E、F分別是AB、AC的中點,即可得到AE=AF=DE=DF,進而判定四邊形AEDF是菱形;
(2)根據(jù)等邊三角形的性質(zhì)得出EF=5,AD=5,進而得到菱形AEDF的面積S.【題目詳解】解:(1)∵AD⊥BC,點E、F分別是AB、AC的中點,
∴Rt△ABD中,DE=AB=AE,
Rt△ACD中,DF=AC=AF,
又∵AB=AC,點E、F分別是AB、AC的中點,
∴AE=AF,
∴AE=AF=DE=DF,
∴四邊形AEDF是菱形;
(2)如圖,
∵AB=AC=BC=10,
∴EF=5,AD=5,
∴菱形AEDF的面積S=EF?AD=×5×5=.【題目點撥】本題考查菱形的判定與性質(zhì)的運用,解題時注意:四條邊相等的四邊形是菱形;菱形的面積等于對角線長乘積的一半.20、方程的根【解題分析】
(1)根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出關(guān)于k的一元一次不等式,解之即可得出k的取值范圍;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.【題目詳解】(1)∵關(guān)于x的一元二次方程x1﹣1(k﹣a)x+k(k+1)=0有兩個不相等的實數(shù)根,∴△=[﹣1(k﹣1)]1﹣4k(k﹣1)=﹣16k+4>0,解得:k<.(1)當(dāng)k=0時,原方程為x1+1x=x(x+1)=0,解得:x1=0,x1=﹣1.∴當(dāng)k=0時,方程的根為0和﹣1.【題目點撥】本題考查了根的判別式以及因式分解法解一元二次方程,解題的關(guān)鍵是:(1)牢記“當(dāng)△>0時,方程有兩個不相等的實數(shù)根”;(1)取k=0,再利用分解因式法解方程.21、(1)y=x﹣2,y=x2++1;(2)a<;(3)m<﹣2或m>1.【解題分析】
(1)直接將點代入函數(shù)解析式,用待定系數(shù)法即可求解函數(shù)解析式;(2)點(2,1)代入一次函數(shù)解析式,得到n=?2m,利用m與n的關(guān)系能求出二次函數(shù)對稱軸x=1,由一次函數(shù)經(jīng)過一、三象限可得m>1,確定二次函數(shù)開口向上,此時當(dāng)y1>y2,只需讓a到對稱軸的距離比a+1到對稱軸的距離大即可求a的范圍.(3)將A(h,k)分別代入兩個二次函數(shù)解析式,再結(jié)合對稱抽得h=,將得到的三個關(guān)系聯(lián)立即可得到,再由題中已知?1<h<1,利用h的范圍求出m的范圍.【題目詳解】(1)將點(2,1),(3,1),代入一次函數(shù)y=mx+n中,,解得,∴一次函數(shù)的解析式是y=x﹣2,再將點(2,1),(3,1),代入二次函數(shù)y=mx2+nx+1,,解得,∴二次函數(shù)的解析式是.(2)∵一次函數(shù)y=mx+n經(jīng)過點(2,1),∴n=﹣2m,∵二次函數(shù)y=mx2+nx+1的對稱軸是x=,∴對稱軸為x=1,又∵一次函數(shù)y=mx+n圖象經(jīng)過第一、三象限,∴m>1,∵y1>y2,∴1﹣a>1+a﹣1,∴a<.(3)∵y=mx2+nx+1的頂點坐標(biāo)為A(h,k),∴k=mh2+nh+1,且h=,又∵二次函數(shù)y=x2+x+1也經(jīng)過A點,∴k=h2+h+1,∴mh2+nh+1=h2+h+1,∴,又∵﹣1<h<1,∴m<﹣2或m>1.【題目點撥】本題考點:點與函數(shù)的關(guān)系;二次函數(shù)的對稱軸與函數(shù)值關(guān)系;待定系數(shù)法求函數(shù)解析式;不等式的解法;數(shù)形結(jié)合思想是解決二次函數(shù)問題的有效方法.22、(1)①證明見解析;②25;(2)為或50+1.【解題分析】
(1)①在直角三角形ABC中,由30°所對的直角邊等于斜邊的一半求出AC的長,再由F為AB中點,得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年物業(yè)管理公司租戶租賃期限及續(xù)約協(xié)議3篇
- 2025年旋挖鉆機購銷及國際物流及倉儲服務(wù)協(xié)議2篇
- 二零二五年度食品加工企業(yè)原料采購框架協(xié)議3篇
- 2025年度醫(yī)院設(shè)施租賃安全協(xié)議書4篇
- 二零二五年礦業(yè)廢棄資源綜合利用承包合同模板2篇
- 2025年度出租車司機職業(yè)培訓(xùn)與權(quán)益保障合同3篇
- 二手房專業(yè)代理服務(wù)協(xié)議樣本版B版
- 二零二五年度水利工程招投標(biāo)與合同管理實務(wù)手冊3篇
- 二零二五年智能工廠生產(chǎn)過程監(jiān)控合作協(xié)議3篇
- 專屬2024年冷鏈物流運輸合作合同一
- 2024年預(yù)制混凝土制品購銷協(xié)議3篇
- 2024-2030年中國高端私人會所市場競爭格局及投資經(jīng)營管理分析報告
- GA/T 1003-2024銀行自助服務(wù)亭技術(shù)規(guī)范
- 《消防設(shè)備操作使用》培訓(xùn)
- 新交際英語(2024)一年級上冊Unit 1~6全冊教案
- 2024年度跨境電商平臺運營與孵化合同
- 2024年電動汽車充電消費者研究報告-2024-11-新能源
- 湖北省黃岡高級中學(xué)2025屆物理高一第一學(xué)期期末考試試題含解析
- 上海市徐匯中學(xué)2025屆物理高一第一學(xué)期期末學(xué)業(yè)水平測試試題含解析
- 稻殼供貨合同范本
- 《采氣樹基礎(chǔ)知識》課件
評論
0/150
提交評論