煤沉積過程成煤構(gòu)造環(huán)境中英文對照外文翻譯文獻(xiàn)_第1頁
煤沉積過程成煤構(gòu)造環(huán)境中英文對照外文翻譯文獻(xiàn)_第2頁
煤沉積過程成煤構(gòu)造環(huán)境中英文對照外文翻譯文獻(xiàn)_第3頁
煤沉積過程成煤構(gòu)造環(huán)境中英文對照外文翻譯文獻(xiàn)_第4頁
煤沉積過程成煤構(gòu)造環(huán)境中英文對照外文翻譯文獻(xiàn)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

中英文對照外文翻譯中英文對照外文翻譯Coal-ProducingTectonicEnvironmentsThisfinalchapterintheinvestigationofcoalsedimentationisconcernedwithdepositionalaspectsofthehighestorderofmagnitude,namely,theinfluenceofthecrustalsettingonpeataccumulation.Thisisabroadandcomplexfieldwhichdrawsoninformation,gatheredfrommanydifferentdisciplinesoftheearthsciences.Someofthesearecurrentlyevolvingquiterapidly,whileothersreina“moppingup”stage,insensuKuhn(1970)andWalker(1973),followingrecentscientificrevolutions.Anexampleofthelatteristhereplacementofthegeosynclinalhypothesisintheearly1970sbytheconceptofplatetectonics.Evenafteralifespanof20years,thisnewparadigmisstillintheprocessofbeingrefinedandfittedoutwithconceptualsubsets,asshownbythecurrentemphasisonterraneanalysis.Itisthereforenotpossibleatthisstagetomakeadefinitivestatementonthechosensubject,butmerelytooutlinetheprincipleonwhichamoderngeotectonicclassificationofcoalfieldscanbeestablished.Eventhismodestgoalisfraughtwithdifficulty,becausethechangefromthepredominantlystaticgeosynclinalviewofglobaltectonicstoitsmodern,largelymobilisticinterpretationhascomplicatedthetectonicclassificationofsomecoalfields.Whilethetectonicstatusofmanycoalfields,e.g.thoseinforedeepsorforelandbasinshaschangedrelativelylittle,thesettingofcoalsfoundininter-andintramontanetroughs,i.e.withinorogeniccordilleras,cannotbeproperlyassessedwithoutverycarefulstudy.Accordingtothegeosynclinalconcept,practicallyalloftheseintradeeps,togetherwithfore-andbackdeeps,theirextra-orogeniccounterparts,wereregardedaspartofagroupofmolassesbasins,thedevelopmentofwhichaccompaniesorfollows“terminalgeosynclinaltecto-orrgenic”(Aubouin1965).Thisfixistandstrictlysequentialinterpretation(highlightedbytheterm“epieugeosyncline”ofKay1951)hasnoplaceinmoderngeotectonicanalysis,whichviewsmostorogenicbeltsascollagesofautochthonousandallochthonousterranes,i.e.astectono-stratigraphicassemblageswithpossiblycoevalbutheterogeneousstratigraphicrecordsreflectingtheiroriginindifferentgeologicalandgeographicaldomains(MongerandPrice1979,Mongeretal.1982).Thetectonicsetting,whichinfluencedtheformationofanallochthonousterraneassemblagebeforeaccretion,mayhavebeenverydifferentinstyleandphysicallyfarremovedfromitsrestingplaceafterdocking.Itfollowsthatamulti-terraneorogenmaycontainavarietyofcoalsformedatdifferenttimesbeforeandafterterraneaccretion.Moreover,contemporaneouspre-accretionarycoaldepositsformedindifferentterranesarelikelytovaryincoaltypes,coalificationhistoriesandtectonicstyles,andallofthesewillinturndifferfromthepost-accretionarymolassescoals,whichalonereflecttheconditionaprevailingintheorogenitself.Indeed,thesituationmayevenbemorecomplex,aswillbediscussedinChap..Platetectonicshascreateditsownnomenclature,ofwhichonlytheessentialtermswillbeusedhere.Theywillbesupplementedbytermswhichareeitherdescriptive,andthereforeindependentofgeotectonictheory,orwhichhavestoodthetestoftimebecausetheyareusefulinspiteoftheirgenericassociationwithnowobsoleteconcepts.Forexample,theexpressions“mio-”and“eugeosynclinalassemblage”havebeenkepthereasreferencetermforshallowwatermarine(mainlyshelf),andoceanfloorpelagite,turbiditeandophioliteassociationa,respectively.Moreover,reducedtoa“miogeocline”,themiogeosynclinehasintheNorth-Americanliteraturebecomeastandardtermforautochthonous,sedimentaryterracewedgesonlappingcontinentalmargins.Alsotectonicattributesofsediments,suchas“synorogenic”flyschand“l(fā)atesyn-(folded)topostorogenic(non-folded)”molasses,respectively,canstillbeusedinaplatetectoniccontextwithoutundulycorruptingtheirrelativelyloosedefinitions.Particularlyinthediscussionofcoalfieldssituatednearconvergentplateedges,theconceptofmolassesastheproductofthedestructionoftheupliftedorogenisveryuseful.Asinthepreviousdiscussion,itisnotthepurposeofthischaptertogivedetaileddescriptionsofalargenumberofcasesbuttoselectafewtypicalexamplesofcoalfieldsandrelatetheessenceoftheirarchitecturetotheirrespectiveplatetectonicsettings.1EarlyExamplesofaTectonicClassificationofCoalfieldsLarge-scalecoalformationcantakeplaceonlyinactivelysubsidingregions,forexampleinsedimentarybasins.Itispossiblethereforetocharacterisethegeotectonicenvironmentoccupiedbyacoalmeasuresequenceinamannersimilartothatwhichisappliedtoothersedimentaryenvironments.Stutzer(1920)andStille(1926)wereamongthefirsttorecognisethegeneticlinksbetweentectonismandtheformationofcoal.Stille,inparticular,referredtothestrikingdifferenceintermsofbasinfill,numberofcoalseamspresent,theiraveragethicknessandproportioninrelationtototalcoalmeasurethickness,whichexistbetweentheCarboniferousandTertiarycoalmeasuresofEurope.HeattributedsuchdissimilaritiestocontrastingdegreesofcrustalmobilityintheareasaffectedbythetwomainEuropeancoal-formingperiods.HisresultsaresummarizedinTable9.1.EvenifdifferencesincompactionratiosbetweentheTertiarybrownandCarboniferousbituminouscoalsaretakenintoaccount(toalesserdegreethecompactionappliestointer-seamsediments)thecontrastisquiteremarkable.LateritwasshownbyvonBubnoff(1937)thatthedistributionoftheworldreservesofcoalisalsorelatedtothegeotectonicsettingofcoalfields.HisconclusionsaresummarizedinTable9.2,whichindicatesthatofallcoaldepositsknownupto1937,some71%developedinformertectonicallyveryactiveenvironments,particularlyinthemolassesforedeepswhichdevelopadjacenttoorogenicbeltsandreceivemuchoftheweathereddebriswasheddownfromtheuplands.CarboniferouscoalmeasuresinmobileVaricanbasinsTertiarycoalmeasuresincratonicbasinsofCentralEuropeAveragecoalmeasurethickness3000m150mAveragenumberofcoalseams2002Averageseamthickness1m15mCumulativethicknessofcoal180m25mProportionoftotalcoal6%16.7%Proportionofeconomicinsitucoal3.6%12%Table9.1.Stille’s(1926)comparison(slightlymodified)betweensomecharacteristicsofcoalmeasuresformedintectonicallymobileandcratonisedpartsofEurope,respectivelyTable9.2.Thedistributionofworldreservesofcoalinreferencetothegeotectonicsettingofcoalfields.(AftervonBubnoff1937)Foredeepsmarginaltoorogenicbelts70%Intradeepswithinorogenicbelts1%Shelfbasinsoncratonicmargins21%Cratonicinterior8%Theconcentrationofcoalintheregionsassociatedwithorogenicbeltsisevenmorehighlightedwhenthelateralextentofthedepositsisconsidered.Coalfieldssituatedwithinorontheshelfmarginsofcratonscoverawiderareathanthecomparativelynarrowforedeeps,butitsarealrestrictioniscompensatedbythefrequencyofcoalseamsoccurringinathickstackofcoalmeasures.Aswillbediscussedlater,thisisrelatedtothesubstantialandprolongedsubsidencethatthecontinentalmarginissubjectedtonearasubductioncomplex,asanorogenicbeltisaccretedontotheplateedge.Itisnotsurprising,therefore,thatvonBubnoff(1937)foundalsoaclosetemporalrelationshipbetweenorogeniesandcoalformationinNorthAmerica,Europe,AsiaandSouthernContinents.Ofcourse,therearemajororogeniesknownwhicharenotassociatedwithcoaldeposits.However,invariably,theirabsenceisrelatedtofactorsaffectingthevegetablesource.Forexample,allpre-Devonianorogeniesoccurredatatimewhentheplantkingdomwasstillinsufficientlyequippedbyevolutiontofulfilitsroleasaneffectiveproducerofpeat.Thecontinentalshelfenvironment,beinglessmobile,hasproducedfewercoaldepositsthantheorogenicdomain.Inthiscontextitisimportanttodefinethetermshelf.Tothegeographer,theshelfregionisusuallythatpartoftheseawhichextendsbetweenthestrand-lineandthecontinentalslope.However,asvonBubnoff(1948a)noted,thepositionofthestrandlineisquiteincidentaldependingoncrustalmovementsandrelativesealevelpositions.Fromthegeologicalviewpoint,itappearsthereforeusefultoextendthedefinitionoftheshelfsothatthetimefactorcanbeaccommodated.Shelfregionsmaythenberegardedasthosemarginalbutfuullyintegratedzonesofcontinentswhichareoccasionallyaffectedbyshallowmarinetransgressions.Typicalareasarethetrailingedgesofcontinentalplatesandthecratonicmarginsofforedeeps.Commonlytwotypesofshelfenvironmentsaredistinguished,calledstableandunstable,respectively(vonBubnoff1948a;KrumbeinandSloss1963).Themajorityfortheirassociatedcoalfieldsisparalicincharacter,whichishighlightedbytheintercalationofcoalmeasureswithmarinestrata,afeaturethatisalsocommontothemolassesforedeeps.However,marinestratamaynotalwaysberecognizedbecauseoflackoffossils,whichisrelatedtothedilutionofseawaterbyanexcessiveinfluxoffreshwaterfromthenearbycoastalswamps(DuffandWalton1962).Intracratoniccoalfieldsandthoseformedinintramontancbasinsarefrequentlylimnicincharacter,i.e.theyhavenohydrologicalconnectiontothesea,becausetheyhavebeenformedinland-lockedbasinsabovethethenprevailingsealevel.AspectacularmodernexampleofintramontanepeatformationoccursinthereedmarshesontheshoresofLakeTiticaca,3810mabovesealevelintheSouthAmericanAndes.Comparedwiththeirparaliccounterpartslimniccoalfieldshavesmallsizeandunstablepositionabovedepositionalbaselevel.However,asindicatedabove,thetermintradeepmaycoveracomplexarrayofdepositionalenvironments,someofwhichmaybetotallyunrelatedtotheorogeninwhichtheynowoccur.ThelastgroupofcoalfieldsmentionedinTable9.2occursintheinteriorofcontinentalareas.Theyowetheirexistencetoavarietyofeventsincludingepeirogenicsaggingofcontinentalcrustandcontinentalrifting.Manypeatandcoaldepositsformedonconsolidatedbasementhavenotectonicoriginatall,butaretheresultofpaludificationrelatedtodifferentialsubsidence.Examplesaresubsidenceduetosaltmigrationandleachinginthesubsurface,ortheformationofsinksisolatedcoalfieldsaretheresultoftheterrestrialisationoflakes.Mostofthesecoalfieldsarelimnic,butraremarineincursionsmayhaveoccurredduringtheirdevelopment.Thetectonicsettingofacoalfieldexertsastronginfluenceonthetypeofcoalthatisformedwithinitsboundaries.Hacquebardetal.(1967),Mackowsky(1968),ShibaokaandSmyth(1975),Hunt(1982)andothershavedemonstratedthatcoalcompositionvariesmoreinlargeparalicdepositsthaninlimnicsetting,becauseofthelargervarietyoffactorsinfluencingextensivecontinentalshelforforedeepenvironments.Moreover,coalsformedinrapidlysubsidingforelandbasinsaremorelikelytohavehighvitrite,clariteandashcontentsthancoalsformedoncratonicshelvesorinslowlysubsidingcratonicbasins.Thesecoalsarelikelytoberichindullcoalsconsistingmainlyofduriteinertite.2BasinFormationasPartofPlateTectonicsThetheoryofplatetectonics,althoughprimarilyconcernedwithhorizontalmovementsoftherelativelyrigidlithosphericplates(crustanduppermostmantle)overthesofterasthenosphere(mantle),hasalsoprovidedanexplanationfortheverticalmovementsthatleadtosubsidenceandbasinformation.Thefollowingcrustalmovementscanbedistinguished(afterDickinson1974andFischer1975):Changeincrustalthickness.Accordingtotheprincipleofisostasythicklow-densitycontinentalcrustfloatshigheronheavymantlematerialthanthinhigh-densityoceaniccrust.Forexample,anisostaticallycompensatedcontinentalcrustof50kmthicknessextends4kmabovethesea,whereasa6-km-thinoceaniccrustiscoveredbyapproximately5kmofwater(Holmes,1965).Platetectonicsprovidesseveralmechanismsforbothcrustalthickeningandthinning.Thelatter,whichisofimmediateinteresthere,isoftenexemplifiedinareasofcontinentalrifting,whereintheearlystagesofplateseparationthecrustalongtheriftzoneisattenuatedbyextensionalstep-faulting,thusformingrapidlysubsidinggrabensandhalf-grabens.Erosionalthiningofanisostaticallyupliftedcrustalportionsalsoleadstosubsequentsubsidence.Upliftduetocrustalthickeningisofsomeinterestinthiscontext,becauseitcreatespotentialsourceareasforcoalmeasuresediments.Thisisparticularlyimportantinforedeeps,wherebasinformationisinvariablycoupledwithupliftinnearbyorogenicbelts.Mostexamplesofupliftduetocrustalthickeningarerelatedeithertotheinjectionofmagmaintothecrustortocontinentalcollision.Changeinthermalregime.Convectioncurrentsintheplasticasthenosphereareresponsiblenotonlyforhorizontalplatemovementsbutalsoforsomeverticalcrustalmotionswhichareindependentofceustalthickness.Upwellingmagmafromthemantlemaycauseupliftbyformingheatbulgesintheoverlyingcrust,andnewoceaniccrustisformedwheresuchmantlematerialisextrudedalongmid-oceanicriftzones.Thelatterareelevatedabovetheseafloorbecauseofthermalexpansionoftheaffectedcrustwhichbecomescolderanddenserwithincreasingageanddistancefiomtherisecrest.Areasofthermaltumescencewithinoralongthemarginofcontinentalplatesaresubjectedtoerosionalthinning,whichaccentuatestheirsubsidenceduringtheperiodofthermaldecay.Loadingaffects.Whensedimentsaccumulateonanisostaticallycompensatedcrusttheadditionalloadwillcreateadisequilibriumwhichwillbebalancedbysubsidence.Thismeansthat,whatevertheinitialcauseforthecreationofadepositionalsite,oncesedimentsarebeginningtoaccumulate,theirweightandcompactionareinsomemeasureresponsibleforthedepositionofadditionalsediments.This,tosomeextentself-prepetuatingprocessisparticularlywellshownbytheflexuralbendingunderloadofthecontinentalshelfmargin(Walcott1972).Othercommongeotectonicsitesforload-inducedsubsidenceandsedimentationareorogenicfordeepmarginswhichareflexurallydown-warpedundertheweightoftheoverridingthrustsheetsgeneratedintheadjacentfoldbelt(Price1973;Laubscher1978;Beaumont1981;QuinlanandBeaumont1984).Additionalloadingofthedownwardlyflexedcrustisprovidedbythemassofmolassessedimentsproducedinthefoldbeltandtransportedintothedevelopingforedeep.Ashasbeendiscussedbefore,additionalcausesofsedimentandcoalformationareprovidedbysubsurfacesaltmigrationandleaching,andeustaticsea-levelchanges,inparticularbytheirinteractionwithcrustalmovements,whichproduceavarietyofsedimentaryresponsesindifferenttectonicdomains.Forexample,riftingofoceaniccrusthasdepositionalconsequencesquitedifferentfromtheseparationofcontinentalcrust.Theriftingofcontinentalcrustmayleadtocoalformation,buttheriftingofoceaniccrustisunlikelytoleadtotheformationofcoal.AsurveyoftheeffectsofthegeotectonicsettingofcoalfieldsonpeataccumulationandcoalcompositionrequiresthereforeanunderstandingofthemajorcrustalelementsofEarthandtheirprincipalmotions.Aplate-tectonicinterpretationofthemaincrustalelementsinreferencetotheirabilitytoprovidesuitablesitesfortheformationofcoalissummarizedinFig.9.1.Thisinterpretationisbasedonthenotionthatthecreationofnewlithosphericcrustalongmid-oceanicriftsandthelateralmovementofthelithosphericslabstowardssubductionzones,whereoceaniccrustisconsumed,producethreetypesofplatejunctures.Theseare(afterDickinson1974):1.Divergentplateedges,whereplateseparationtakesplaceandthedevelopinggapisfilledbyupwellingmantlematerialweldingnewoceaniccrusttotheseparatingplates.2.Convergentplateedges,whereoldcrustissubductedintothemantleunderneaththeleadingedgeoftheoverridingplate.3.Transformplateedges,whereadjacentplatesarelaterallydisplacebymovementalongstrike-slipfaults.Fig.9.1.ThegeotectonicsettingofcoalfieldsinreferencetoCurray’s(1975)plate-tectonicsubdivisionsoftheearth.Theidentificationofcountriesisbyinternationalcountrycode.ThetectonicsubdivisionsofcoalfieldsusedbyvonBubnoff(1937)inTable9.2canbebroadlyaccommodatedwithintheplatetectonicframeworkofFig.9.1.Thefore-andmanyintradeepsarepartofplateconvergencecomplexes,whichinviewoftheiroverwhelmingquantitative,i.e.economicimportance,willbediscussedfirst.Themidplatecontinentalmarginisthesettingofshelfdeposits,whereasthecratonicandriftvalleysettingsrefertotheinteriorofconsolidatedareas.3CoalfieldsSituatedNearConvergentPlateEdgesTherelationshipsbetweentectonicsettingandcoalcontentofaregioninferredfromTables9.1and9.2suggestthatcoalcanformmorefrequentlyingeologicalenvironmentscapableofofferingalargernumberandvarietyofcrustalmovementsperunittimethanlessmobileareas.Asmentionedabove,thisisareatureofforedeeps,whichhavebeenprolificcoalproducersinthepat.Mountainchainsconsistingoffoldedandoftenmetamorphosedrocksareformedaslinearandoftenarcuateweltsalongtheedgesofconvergingplatesbyanumberoftectonicandmagmaticevents,allofwhichappeartobeprimarilyrelatedtotheprocessofsubduction.However,notallformersubductionzoneshaveledtotheformationofcoalfields,whichisaproblemrelatedtothenatureoftheconvergingplates,i.e.whethertheyconsistofoceanicorcontinentalcrust.AccordingtoFigs.9.1and9.2,therearethreescenarios:Subductionofoceaniccrustbeneatnoceaniccrust(Fig.9.2A).Itisunlikelythatthissituationwillleadtosignificantcoalfieldformationbecauseoftheconsiderablewatercoveroftheseafloor.Oceaniccrustemergesabovewateronlywhereithasbeenthickenedbymagmaticinjectionandmaythenproduceisolatedsmallcoaloccurrences.However,aslongasonlyoceaniccrustisinvolved,thelackofastrongnearbysedimentsourceleavestheadjacentoceanbasinstarvedandtoodeepforpeataccumulation.Conversely,compositearcsystems,inwhichseveralsubductionzonesareoperatingsimultaneouslyinoppositedirectionsand/orinwhichallochthonouscrustalfragments(terranes)havebeenaccretedtothearcsystem,mayprovidesuitableconditionsforcoalformation.AnexamplearetheJapaneseislands,whichcontaincoalfieldsofTertiaryageinbothfore-andbackarcpositions(Aihara1986).Forearcbasinselsewherearenotknowntobesignificantcoalproducersduetothetectonicinstabilityduringthebasinstageandthesubsequentdestructionbytectonism.Theoccurrenceofa3000-m-thickPalaeogenesuccessionoffoldedandfaultedcoalmeasuresintheHidakaBasinofcentralHokkaido,describedbyAihara(1986),isthereforeacomparativelyrarecaseofathickcoalmeasuresequenceformedandpreservedinaforearcsetting.Subductionofoceaniccrustunderneathcontinentalcrust(Fig.9.2B).Thereareseveralpastandpresentexamplesofextensivecoalformationassociatedwiththistypeofplateconvergence.Themaincoalfieldsformedintheprocessoccupyretroarcbasins(Dickinson1974)filledwiththicksedimentarysuccessions.Thebeginningofsedimentationisprobablyrelatedtoextensionaltectonicsinthebackarcarea,atatimewhensubductionisstillinprocess.However,duringandfollowingtheaccretionofallochthonousterranestheretroarcbasinissubjectedtoacompressionalstressregimewhichcausesittosubsideundertheweightofoverridingthrustwedges.Partialsubductionofcontinentalcrustbeneathcontinentalcrust(Fig.9.2C).Thistyperepresentsanexampleofcontinentalcollision.Becauseofitsthicknessandlowdensity,continentalcrustcanonlypartiallybesubductedwhichleadstotectonicstackingandoverlapofthetwoplatemargins.Theconditionsofcoalformationsinaretroarcbasinarethesameasin(2)fortheoverridingplate.Inaddition,atleasttwolociofpotentialpeataccumulationarecontributedbytheconsumedplate,one(usuallydestroyedbysubsequentorogenesisandmetamorphism)intheformofthecontinentalshelfmarginwhichwasformedbeforecollisionoccurred,andtheotherintheformofaperipheralbasin(Dickinson1974)formedatthefootofthecollisionbelt.Retroarcandperipheralbasinssharethesamebasicforedeeparchitecture(Beaumont1981),becausebotharetheproductsofflexuraldownwarpingoftheunderlyingcrustfollowingloadingbyoverridingthruetsheets.Fig.9.2A-C.Threepossibilitiesofplateconvergence.Continentalcrust;ocaniccrust;volcanics;???molassessediments;???marinesediments中文:成煤構(gòu)造環(huán)境在已知的煤沉積過程中,這種最終階段是與影響泥炭堆積外在的呈最高狀態(tài)的重要的沉積因素相聯(lián)系的。這是一個(gè)寬廣且復(fù)雜的領(lǐng)域,它吸收了聚集地球科學(xué)許多不同學(xué)科的知識。一部分領(lǐng)域已經(jīng)相當(dāng)迅速的普遍展開,而其他的一些在跟隨最近的科學(xué)革命處于一個(gè)結(jié)束期。在20世紀(jì)70年代早期的地槽假說被板塊構(gòu)造理論所替代就是后者中的一個(gè)例子。即使在經(jīng)過20年后,這種新的模式仍處于被改進(jìn)或裝備于概念的子集,同時(shí)在地形分析中被列為通用的重點(diǎn)的過程中。因此,在這個(gè)時(shí)期對于被選擇的題目做一個(gè)決定性的陳述是不可能的,但是,只是描述關(guān)于現(xiàn)代大地構(gòu)造因素方面的煤田分類是可以建立的。這種現(xiàn)代化目標(biāo)的實(shí)現(xiàn)是充滿困難的,因?yàn)橐獜恼純?yōu)勢的全球構(gòu)造學(xué)靜止地槽的觀點(diǎn)變?yōu)楝F(xiàn)代的,大量的活動(dòng)論解釋使得一些煤田的構(gòu)造分類變得復(fù)雜。當(dāng)許多煤田的構(gòu)造情況,例如那些前淵或陸前盆地已經(jīng)相對改變一點(diǎn),建立在內(nèi)部或山間的槽即造山的山脈上的煤田裝置,如果沒有仔細(xì)的學(xué)習(xí)是不能被適當(dāng)?shù)姆峙上氯?。根?jù)該地槽的概念,幾乎所有的這些內(nèi)淵,連同前淵和后淵,他們的超級造山帶對口,被視為一組穩(wěn)定地塊的一部分,其中伴隨著“有機(jī)終端地槽構(gòu)造”的發(fā)展(Aubouin1965)。這固定的并嚴(yán)格層序的解釋(Kay所強(qiáng)調(diào)的“后成優(yōu)地槽”1951)并沒有發(fā)生在現(xiàn)代大地構(gòu)造分析中,其中的大部分造山帶被作為拼貼的本地成因和異地成因的地形,即作為構(gòu)造地層組合與可能同時(shí)代不均勻的地層記錄,反映其原產(chǎn)地在不同的地質(zhì)上或地理上的領(lǐng)域(MongerandPrice1979,Mongeretal.1982)。構(gòu)造環(huán)境,這也影響到形成一個(gè)異地巖層組合前的堆積,在遠(yuǎn)離了物源地沉積下來后,在類型和形態(tài)上可能已經(jīng)非常不同。它如下一個(gè)多造山帶的巖層可能含有各種煤形成于不同時(shí)期之前和之后的巖層的堆積。此外,當(dāng)代加積前形成的煤炭儲量在不同的地形很可能會有所不同,在煤的類型,煤化歷史和構(gòu)造樣式,所有這些將在來自不同加積后的穩(wěn)定地塊煤盆地,其中僅反映在造山帶本身?xiàng)l件普遍存在。事實(shí)上,情況甚至可能會更加復(fù)雜,將在chap.討論。板塊構(gòu)造已創(chuàng)造了自己的名稱,其中只有基本術(shù)語將被用于在這里。他們對輔助術(shù)語有的只是描述性的,因此獨(dú)立的大地構(gòu)造理論中,有的經(jīng)受了時(shí)間的考驗(yàn),因?yàn)樗麄冊谕ㄓ玫亩F(xiàn)在已經(jīng)過時(shí)的概念中是有用的。舉例來說,詞“中新世”和“優(yōu)地槽組合”一直在用,涉及到淺海(主要是大陸架),和深海結(jié)核,濁積巖和蛇綠巖套,分別作為參考。此外,提到“冒地向斜”,冒地槽已在北美文獻(xiàn)中成為一個(gè)標(biāo)準(zhǔn)的原地術(shù)語,沉積階地邊緣超覆了大陸邊緣。同樣沉積物的構(gòu)造特征,如“同造山期的”復(fù)理石和“后期的同褶皺到造山期(沒有褶皺作用)”的穩(wěn)定地塊,分別地,仍然可以用在一個(gè)板塊構(gòu)造背景下,沒有不必要的混淆他們的相對精確的定義。尤其是在討論煤田位于聚合的板塊邊緣,穩(wěn)定地塊的概念用在造成破壞該隆起造山帶是十分有益的。由于在先前的討論,也不是本章的目的給予詳細(xì)說明了一大批例子,但要選擇幾個(gè)典型的涉及了本質(zhì)和結(jié)構(gòu)的煤田,以各自的板塊構(gòu)造建立。1一個(gè)早期的煤田構(gòu)造分類的例子大型煤田的形成可以發(fā)生的地方,只有在活躍的下陷地區(qū),例如在沉積盆地。因此,用一個(gè)煤系序列表征大地構(gòu)造環(huán)境的方式表示其他適用的沉積環(huán)境是有可能的。Stutzer(1920)和Stille(1926)第一次確認(rèn)構(gòu)造與成煤之間的成因關(guān)系。Stille,尤其是提到突出差異而言,歐洲盆地充填中煤層的平均厚度和的比例關(guān)系與總煤系厚度的聯(lián)系,在這之間存在的石炭紀(jì)和第三紀(jì)煤的數(shù)量。他歸因于這樣的相似性,以對比程度的地殼的流動(dòng)性,在歐洲的兩個(gè)主要成煤期受影響地區(qū)。他的結(jié)果總結(jié)在表9.1.中。即使在第三系褐色和石炭系瀝青煤壓實(shí)比率之間的不同的計(jì)算(在較小程度壓實(shí)適用于跨煤層沉積物)的對比是相當(dāng)顯著的。后來結(jié)果表明,由vonBubnoff(1937)表示,分布世界各地的煤的儲量是與煤田的大地構(gòu)造環(huán)境有關(guān)的。他的結(jié)論的摘要列于表9.2,這表明在1937年所有的煤炭儲量都已經(jīng)知道,約71%的是發(fā)展構(gòu)造非常活躍的環(huán)境,特別是在穩(wěn)定地塊盆地前淵發(fā)展來的,其中毗鄰造山帶和從高地來的接收的許多風(fēng)化碎片。表9.1.Stille’s(1926)一些比較(略作修改)石炭系的煤在移動(dòng)的Varican盆地中的數(shù)量第三系的煤在歐洲中部克拉通盆地中的數(shù)量平均煤系厚度3000m150m平均煤層數(shù)量2002平均煤層厚度1m15m累積煤層厚度180m25m產(chǎn)出煤占總量比例6%16.7%煤占經(jīng)濟(jì)比例3.6%12%分述在構(gòu)造移動(dòng)盆地和歐洲部分克拉通盆地特征煤的數(shù)量表9.2.分布在世界儲備煤中提到了大地構(gòu)造環(huán)境的煤田。(vonBubnoff1937之后)前淵邊際到造山帶70%內(nèi)淵造山帶內(nèi)1%在克拉通盆地邊緣的陸架盆地21%克拉通盆地內(nèi)部8%側(cè)向范圍的沉積被認(rèn)為在與造山帶相關(guān)的地區(qū)的煤的聚集中更是突出的。煤田位于沙洲的邊緣或沙洲內(nèi)古陸核的涵蓋了更廣闊的領(lǐng)域較相對狹窄的前淵,但其地域的限制,是補(bǔ)償?shù)念l率煤層發(fā)生在一個(gè)一定數(shù)量厚的煤層。正如我們將在所后面討論的,這是涉及到大量的和長期沉陷的被認(rèn)為在大陸邊緣受到附近俯沖的復(fù)雜的,作為一個(gè)造山帶是與板塊邊緣共生的。這是不足為奇的,因此,在北美,歐洲,亞洲和南部大陸vonBubnoff(1937)還發(fā)現(xiàn)一個(gè)山脈與成煤之間的相近關(guān)系。當(dāng)然,那兒已知的山脈與煤的沉積是沒有關(guān)系的。但是,往往他們的缺失是與影響植物來源有關(guān)的。例如,所有的前泥盆紀(jì)造山帶發(fā)生的時(shí)候,植物界仍然不能滿足作為生產(chǎn)泥炭的作用。大陸架的環(huán)境,缺少移動(dòng)性,比造山作用產(chǎn)生的煤炭沉積少。在這方面是定義大陸架這個(gè)術(shù)語是很重要的。對于地理學(xué)來說,大陸架地區(qū)向海的部分通常在股線和大陸斜坡之間延伸。不過,由于vonBubnoff(1948a)指出,濱線的位置是相當(dāng)偶然的,決定于地殼運(yùn)動(dòng)和海平面位置.從地質(zhì)的角度來看,大陸架定義的擴(kuò)大似乎是有用的,因此時(shí)間的因素可以忽略。大陸架地區(qū)可能被視為邊緣的那些地區(qū),但大陸的完整區(qū)域是偶爾受淺海的超覆。典型的地區(qū)是在大陸邊緣的尾端,大陸板塊和克拉通邊緣的前淵。常見的兩種類型是大陸架是顯著的環(huán)境,分別為所謂的穩(wěn)定和不穩(wěn)定(vonBubnoff1948a;KrumbeinandSloss1963)。多數(shù)與它們相關(guān)的煤田是近海特征,這是所強(qiáng)調(diào)的插層煤在海相地層中的數(shù)量,其中一個(gè)特征是穩(wěn)定地塊盆地前淵普遍存在的。不過,因?yàn)槿鄙倩?海相地層不一定一直得到承認(rèn),這是與過量的新鮮水從沿海沼澤大量涌入有關(guān)的(DuffandWalton1962)。克拉通內(nèi)的煤田和那些形成于山間盆地的煤田在特征上經(jīng)常是湖泊相的,即它們對于海洋來說沒有水文學(xué)的意義,因?yàn)樗麄冊诤髞淼暮F矫嬷弦呀?jīng)形成堵塞的內(nèi)陸盆地。一個(gè)引人注目的現(xiàn)代的例子,山脈之間內(nèi)泥炭的形成是發(fā)生在南美安第斯山脈高于海平面3810米蘆葦沼澤對海岸的的湖。與他們相比,在沉積基底的水平面之上近海成因的相對湖泊成因煤田有規(guī)模小和不穩(wěn)定的特征。然而,如上文所示,術(shù)語內(nèi)淵可能包括一個(gè)復(fù)雜系列的沉積環(huán)境,其中一些可能會與造山帶現(xiàn)在發(fā)生的完全無關(guān)。最后一批在表9.2提到的煤田發(fā)生在內(nèi)部的大陸地區(qū)。他們應(yīng)該歸功于各種各樣的活動(dòng),包括造陸下陷大陸地殼和大陸裂谷。許多泥炭和煤炭沉積的形成是基于沒有構(gòu)造的起源在所有,但泥炭化的結(jié)果是與不同的沉降有關(guān)的。這些例子是由于沉積物在地下遷移和過濾后沉淀,或下沉的孤立煤田的形成是由于該陸表的湖泊。大部分的這些煤田是湖泊相的,但罕見的海侵可能發(fā)生在他們的發(fā)展過程中。在形成其邊界過程中,煤田的構(gòu)造環(huán)境有著重要的影響力。Hacquebard等(1967),Mackowsky(1968),ShibaokaandSmyth(1975),Hunt(1982)和其他人已經(jīng)表明,煤的組成在很大程度上近海相比湖泊相呈現(xiàn)更大的不同,因?yàn)榇罅康牟煌蛩赜绊憣拸V的大陸架或前淵盆地環(huán)境。此外,煤的形成在迅速下沉前陸盆地更可能有高含量的微鏡煤,微亮煤和灰分比煤形成的穩(wěn)定的邊緣上,或在慢慢下沉克拉通盆地。這些煤很可能是豐富的暗煤為主的微惰性煤。2盆地形成作為板塊構(gòu)造理論的一部分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論