2024屆山東青島嶗山區(qū)中考數(shù)學(xué)模擬試題含解析_第1頁
2024屆山東青島嶗山區(qū)中考數(shù)學(xué)模擬試題含解析_第2頁
2024屆山東青島嶗山區(qū)中考數(shù)學(xué)模擬試題含解析_第3頁
2024屆山東青島嶗山區(qū)中考數(shù)學(xué)模擬試題含解析_第4頁
2024屆山東青島嶗山區(qū)中考數(shù)學(xué)模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆山東青島嶗山區(qū)中考數(shù)學(xué)模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.一次函數(shù)的圖像不經(jīng)過的象限是:()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如圖數(shù)軸的A、B、C三點(diǎn)所表示的數(shù)分別為a、b、c.若|a﹣b|=3,|b﹣c|=5,且原點(diǎn)O與A、B的距離分別為4、1,則關(guān)于O的位置,下列敘述何者正確?()A.在A的左邊 B.介于A、B之間C.介于B、C之間 D.在C的右邊3.在同一平面內(nèi),下列說法:①過兩點(diǎn)有且只有一條直線;②兩條不相同的直線有且只有一個(gè)公共點(diǎn);③經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線垂直;④經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行,其中正確的個(gè)數(shù)為(

)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)4.已知二次函數(shù)y=3(x﹣1)2+k的圖象上有三點(diǎn)A(,y1),B(2,y2),C(﹣,y3),則y1、y2、y3的大小關(guān)系為()A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y15.下列各點(diǎn)中,在二次函數(shù)的圖象上的是()A. B. C. D.6.如圖,小橋用黑白棋子組成的一組圖案,第1個(gè)圖案由1個(gè)黑子組成,第2個(gè)圖案由1個(gè)黑子和6個(gè)白子組成,第3個(gè)圖案由13個(gè)黑子和6個(gè)白子組成,按照這樣的規(guī)律排列下去,則第8個(gè)圖案中共有(

)和黑子.A.37 B.42 C.73 D.1217.如圖已知⊙O的內(nèi)接五邊形ABCDE,連接BE、CE,若AB=BC=CE,∠EDC=130°,則∠ABE的度數(shù)為()A.25° B.30° C.35° D.40°8.如圖,將△ABC沿DE,EF翻折,頂點(diǎn)A,B均落在點(diǎn)O處,且EA與EB重合于線段EO,若∠DOF=142°,則∠C的度數(shù)為()A.38° B.39° C.42° D.48°9.△ABC在網(wǎng)絡(luò)中的位置如圖所示,則cos∠ACB的值為()A. B. C. D.10.如圖,正方形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結(jié)論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正確的有()個(gè).A.2 B.3 C.4 D.5二、填空題(共7小題,每小題3分,滿分21分)11.因式分解:.12.方程的解為.13.用半徑為6cm,圓心角為120°的扇形圍成一個(gè)圓錐,則圓錐的底面圓半徑為_______cm.14.如圖,在△ABC中,AB=AC=2,BC=1.點(diǎn)E為BC邊上一動(dòng)點(diǎn),連接AE,作∠AEF=∠B,EF與△ABC的外角∠ACD的平分線交于點(diǎn)F.當(dāng)EF⊥AC時(shí),EF的長(zhǎng)為_______.15.分解因式:2m2-8=_______________.16.已知x+y=,xy=,則x2y+xy2的值為____.17.已知一個(gè)菱形的邊長(zhǎng)為5,其中一條對(duì)角線長(zhǎng)為8,則這個(gè)菱形的面積為_____.三、解答題(共7小題,滿分69分)18.(10分)為了了解同學(xué)們每月零花錢的數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個(gè)尚不完整的統(tǒng)計(jì)圖表.調(diào)查結(jié)果統(tǒng)計(jì)表組別分組(單位:元)人數(shù)A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bEx≥1202請(qǐng)根據(jù)以上圖表,解答下列問題:填空:這次被調(diào)查的同學(xué)共有人,a+b=,m=;求扇形統(tǒng)計(jì)圖中扇形C的圓心角度數(shù);該校共有學(xué)生1000人,請(qǐng)估計(jì)每月零花錢的數(shù)額x在60≤x<120范圍的人數(shù).19.(5分)在正方形ABCD中,動(dòng)點(diǎn)E,F(xiàn)分別從D,C兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DC,CB上移動(dòng).(1)如圖1,當(dāng)點(diǎn)E在邊DC上自D向C移動(dòng),同時(shí)點(diǎn)F在邊CB上自C向B移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,請(qǐng)你寫出AE與DF的數(shù)量關(guān)系和位置關(guān)系,并說明理由;(2)如圖2,當(dāng)E,F(xiàn)分別在邊CD,BC的延長(zhǎng)線上移動(dòng)時(shí),連接AE,DF,(1)中的結(jié)論還成立嗎?(請(qǐng)你直接回答“是”或“否”,不需證明);連接AC,請(qǐng)你直接寫出△ACE為等腰三角形時(shí)CE:CD的值;(3)如圖3,當(dāng)E,F(xiàn)分別在直線DC,CB上移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,由于點(diǎn)E,F(xiàn)的移動(dòng),使得點(diǎn)P也隨之運(yùn)動(dòng),請(qǐng)你畫出點(diǎn)P運(yùn)動(dòng)路徑的草圖.若AD=2,試求出線段CP的最大值.20.(8分)如圖,反比例y=的圖象與一次函數(shù)y=kx﹣3的圖象在第一象限內(nèi)交于A(4,a).(1)求一次函數(shù)的解析式;(2)若直線x=n(0<n<4)與反比例函數(shù)和一次函數(shù)的圖象分別交于點(diǎn)B,C,連接AB,若△ABC是等腰直角三角形,求n的值.21.(10分)如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點(diǎn)D′未到達(dá)點(diǎn)B時(shí),A′C′交CD于E,D′C′交CB于點(diǎn)F,連接EF,當(dāng)四邊形EDD′F為菱形時(shí),試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請(qǐng)說明理由.22.(10分)某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動(dòng)的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個(gè)興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),請(qǐng)你根據(jù)圖中提供的信息解答下列問題:(1)九(1)班的學(xué)生人數(shù)為,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;(2)扇形統(tǒng)計(jì)圖中m=,n=,表示“足球”的扇形的圓心角是度;(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊(duì),請(qǐng)用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.23.(12分)如圖,已知拋物線過點(diǎn)A(4,0),B(﹣2,0),C(0,﹣4).(1)求拋物線的解析式;(2)在圖甲中,點(diǎn)M是拋物線AC段上的一個(gè)動(dòng)點(diǎn),當(dāng)圖中陰影部分的面積最小值時(shí),求點(diǎn)M的坐標(biāo);(3)在圖乙中,點(diǎn)C和點(diǎn)C1關(guān)于拋物線的對(duì)稱軸對(duì)稱,點(diǎn)P在拋物線上,且∠PAB=∠CAC1,求點(diǎn)P的橫坐標(biāo).24.(14分)已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AG∥DB交CB的延長(zhǎng)線于G.求證:△ADE≌△CBF;若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解題分析】試題分析:根據(jù)一次函數(shù)y=kx+b(k≠0,k、b為常數(shù))的圖像與性質(zhì)可知:當(dāng)k>0,b>0時(shí),圖像過一二三象限;當(dāng)k>0,b<0時(shí),圖像過一三四象限;當(dāng)k<0,b>0時(shí),圖像過一二四象限;當(dāng)k<0,b<0,圖像過二三四象限.這個(gè)一次函數(shù)的k=<0與b=1>0,因此不經(jīng)過第三象限.答案為C考點(diǎn):一次函數(shù)的圖像2、C【解題分析】分析:由A、B、C三點(diǎn)表示的數(shù)之間的關(guān)系結(jié)合三點(diǎn)在數(shù)軸上的位置即可得出b=a+3,c=b+5,再根據(jù)原點(diǎn)O與A、B的距離分別為1、1,即可得出a=±1、b=±1,結(jié)合a、b、c間的關(guān)系即可求出a、b、c的值,由此即可得出結(jié)論.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原點(diǎn)O與A、B的距離分別為1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴點(diǎn)O介于B、C點(diǎn)之間.故選C.點(diǎn)睛:本題考查了數(shù)值以及絕對(duì)值,解題的關(guān)鍵是確定a、b、c的值.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時(shí),根據(jù)數(shù)軸上點(diǎn)的位置關(guān)系分別找出各點(diǎn)代表的數(shù)是關(guān)鍵.3、C【解題分析】

根據(jù)直線的性質(zhì)公理,相交線的定義,垂線的性質(zhì),平行公理對(duì)各小題分析判斷后即可得解.【題目詳解】解:在同一平面內(nèi),①過兩點(diǎn)有且只有一條直線,故①正確;②兩條不相同的直線相交有且只有一個(gè)公共點(diǎn),平行沒有公共點(diǎn),故②錯(cuò)誤;③在同一平面內(nèi),經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線垂直,故③正確;④經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行,故④正確,綜上所述,正確的有①③④共3個(gè),故選C.【題目點(diǎn)撥】本題考查了平行公理,直線的性質(zhì),垂線的性質(zhì),以及相交線的定義,是基礎(chǔ)概念題,熟記概念是解題的關(guān)鍵.4、D【解題分析】試題分析:根據(jù)二次函數(shù)的解析式y(tǒng)=3(x-1)2+k,可知函數(shù)的開口向上,對(duì)稱軸為x=1,根據(jù)函數(shù)圖像的對(duì)稱性,可得這三點(diǎn)的函數(shù)值的大小為y3>y2>y1.故選D點(diǎn)睛:此題主要考查了二次函數(shù)的圖像與性質(zhì),解題時(shí)先根據(jù)頂點(diǎn)式求出開口方向,和對(duì)稱軸,然后根據(jù)函數(shù)的增減性比較即可,這是中考??碱},難度有點(diǎn)偏大,注意結(jié)合圖形判斷驗(yàn)證.5、D【解題分析】

將各選項(xiàng)的點(diǎn)逐一代入即可判斷.【題目詳解】解:當(dāng)x=1時(shí),y=-1,故點(diǎn)不在二次函數(shù)的圖象;當(dāng)x=2時(shí),y=-4,故點(diǎn)和點(diǎn)不在二次函數(shù)的圖象;當(dāng)x=-2時(shí),y=-4,故點(diǎn)在二次函數(shù)的圖象;故答案為:D.【題目點(diǎn)撥】本題考查了判斷一個(gè)點(diǎn)是否在二次函數(shù)圖象上,解題的關(guān)鍵是將點(diǎn)代入函數(shù)解析式.6、C【解題分析】解:第1、2圖案中黑子有1個(gè),第3、4圖案中黑子有1+2×6=13個(gè),第5、6圖案中黑子有1+2×6+4×6=37個(gè),第7、8圖案中黑子有1+2×6+4×6+6×6=73個(gè).故選C.點(diǎn)睛:本題考查了規(guī)律型:圖形的變化類:通過從一些特殊的圖形變化中發(fā)現(xiàn)不變的因素或按規(guī)律變化的因素,然后推廣到一般情況.7、B【解題分析】

如圖,連接OA,OB,OC,OE.想辦法求出∠AOE即可解決問題.【題目詳解】如圖,連接OA,OB,OC,OE.∵∠EBC+∠EDC=180°,∠EDC=130°,∴∠EBC=50°,∴∠EOC=2∠EBC=100°,∵AB=BC=CE,∴弧AB=弧BC=弧CE,∴∠AOB=∠BOC=∠EOC=100°,∴∠AOE=360°﹣3×100°=60°,∴∠ABE=∠AOE=30°.故選:B.【題目點(diǎn)撥】本題考查圓周角定理,圓心角,弧,弦之間的關(guān)系等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考常考題型.8、A【解題分析】分析:根據(jù)翻折的性質(zhì)得出∠A=∠DOE,∠B=∠FOE,進(jìn)而得出∠DOF=∠A+∠B,利用三角形內(nèi)角和解答即可.詳解:∵將△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A﹣∠B=180°﹣142°=38°.故選A.點(diǎn)睛:本題考查了三角形內(nèi)角和定理、翻折的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用這些知識(shí)解決問題,學(xué)會(huì)把條件轉(zhuǎn)化的思想,屬于中考常考題型.9、B【解題分析】作AD⊥BC的延長(zhǎng)線于點(diǎn)D,如圖所示:在Rt△ADC中,BD=AD,則AB=BD.cos∠ACB=,故選B.10、C【解題分析】

根據(jù)AF是∠BAC的平分線,BH⊥AF,可證AF為BG的垂直平分線,然后再根據(jù)正方形內(nèi)角及角平分線進(jìn)行角度轉(zhuǎn)換證明EG=EB,F(xiàn)G=FB,即可判定②選項(xiàng);設(shè)OA=OB=OC=a,菱形BEGF的邊長(zhǎng)為b,由四邊形BEGF是菱形轉(zhuǎn)換得到CF=GF=BF,由四邊形ABCD是正方形和角度轉(zhuǎn)換證明△OAE≌△OBG,即可判定①;則△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的關(guān)系式,再由△PGC∽△BGA,得到=1+,從而判斷得出④;得出∠EAB=∠GBC從而證明△EAB≌△GBC,即可判定③;證明△FAB≌△PBC得到BF=CP,即可求出,從而判斷⑤.【題目詳解】解:∵AF是∠BAC的平分線,∴∠GAH=∠BAH,∵BH⊥AF,∴∠AHG=∠AHB=90°,在△AHG和△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是線段BG的垂直平分線,∴EG=EB,F(xiàn)G=FB,∵四邊形ABCD是正方形,∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四邊形BEGF是菱形;②正確;設(shè)OA=OB=OC=a,菱形BEGF的邊長(zhǎng)為b,∵四邊形BEGF是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,∠CGF=90°,∴CF=GF=BF,∵四邊形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°,∵BH⊥AF,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠OAE=∠OBG,在△OAE和△OBG中,∴△OAE≌△OBG(ASA),①正確;∴OG=OE=a﹣b,∴△GOE是等腰直角三角形,∴GE=OG,∴b=(a﹣b),整理得a=b,∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,∵四邊形ABCD是正方形,∴PC∥AB,∴===1+,∵△OAE≌△OBG,∴AE=BG,∴=1+,∴==1﹣,④正確;∵∠OAE=∠OBG,∠CAB=∠DBC=45°,∴∠EAB=∠GBC,在△EAB和△GBC中,∴△EAB≌△GBC(ASA),∴BE=CG,③正確;在△FAB和△PBC中,∴△FAB≌△PBC(ASA),∴BF=CP,∴====,⑤錯(cuò)誤;綜上所述,正確的有4個(gè),故選:C.【題目點(diǎn)撥】本題綜合考查了全等三角形的判定與性質(zhì),相似三角形,菱形的判定與性質(zhì)等四邊形的綜合題.該題難度較大,需要學(xué)生對(duì)有關(guān)于四邊形的性質(zhì)的知識(shí)有一系統(tǒng)的掌握.二、填空題(共7小題,每小題3分,滿分21分)11、.【解題分析】要將一個(gè)多項(xiàng)式分解因式的一般步驟是首先看各項(xiàng)有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應(yīng)用平方差公式分解即可:.12、.【解題分析】試題分析:首先去掉分母,觀察可得最簡(jiǎn)公分母是,方程兩邊乘最簡(jiǎn)公分母,可以把分式方程轉(zhuǎn)化為整式方程求解,然后解一元一次方程,最后檢驗(yàn)即可求解:,經(jīng)檢驗(yàn),是原方程的根.13、1.【解題分析】

解:設(shè)圓錐的底面圓半徑為r,根據(jù)題意得1πr=,解得r=1,即圓錐的底面圓半徑為1cm.故答案為:1.【題目點(diǎn)撥】本題考查圓錐的計(jì)算,掌握公式正確計(jì)算是解題關(guān)鍵.14、1+【解題分析】

當(dāng)AB=AC,∠AEF=∠B時(shí),∠AEF=∠ACB,當(dāng)EF⊥AC時(shí),∠ACB+∠CEF=90°=∠AEF+∠CEF,即可得到AE⊥BC,依據(jù)Rt△CFG≌Rt△CFH,可得CH=CG=,再根據(jù)勾股定理即可得到EF的長(zhǎng).【題目詳解】解:如圖,當(dāng)AB=AC,∠AEF=∠B時(shí),∠AEF=∠ACB,當(dāng)EF⊥AC時(shí),∠ACB+∠CEF=90°=∠AEF+∠CEF,∴AE⊥BC,∴CE=BC=2,又∵AC=2,∴AE=1,EG==,∴CG==,作FH⊥CD于H,∵CF平分∠ACD,∴FG=FH,而CF=CF,∴Rt△CFG≌Rt△CFH,∴CH=CG=,設(shè)EF=x,則HF=GF=x-,∵Rt△EFH中,EH2+FH2=EF2,∴(2+)2+(x-)2=x2,解得x=1+,故答案為1+.【題目點(diǎn)撥】本題主要考查了角平分線的性質(zhì),勾股定理以及等腰三角形的性質(zhì)的運(yùn)用,解決問題的關(guān)鍵是掌握等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合.15、2(m+2)(m-2)【解題分析】

先提取公因式2,再對(duì)余下的多項(xiàng)式利用平方差公式繼續(xù)分解因式.【題目詳解】2m2-8,=2(m2-4),=2(m+2)(m-2)【題目點(diǎn)撥】本題考查了提公因式法與公式法分解因式,要求靈活使用各種方法對(duì)多項(xiàng)式進(jìn)行因式分解,一般來說,如果可以先提取公因式的要先提取公因式,再考慮運(yùn)用公式法,十字相乘等方法分解.16、3【解題分析】分析:因式分解,把已知整體代入求解.詳解:x2y+xy2=xy(x+y)=3.點(diǎn)睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的時(shí)候,要注意整體換元法的靈活應(yīng)用,訓(xùn)練將一個(gè)式子看做一個(gè)整體,利用上述方法因式分解的能力.17、1【解題分析】試題解析:如圖,∵菱形ABCD中,BD=8,AB=5,∴AC⊥BD,OB=BD=4,∴OA==3,∴AC=2OA=6,∴這個(gè)菱形的面積為:AC?BD=×6×8=1.三、解答題(共7小題,滿分69分)18、50;28;8【解題分析】【分析】1)用B組的人數(shù)除以B組人數(shù)所占的百分比,即可得這次被調(diào)查的同學(xué)的人數(shù),利用A組的人數(shù)除以這次被調(diào)查的同學(xué)的人數(shù)即可求得m的值,用總?cè)藬?shù)減去A、B、E的人數(shù)即可求得a+b的值;(2)先求得C組人數(shù)所占的百分比,乘以360°即可得扇形統(tǒng)計(jì)圖中扇形的圓心角度數(shù);(3)用總?cè)藬?shù)1000乘以每月零花錢的數(shù)額在范圍的人數(shù)的百分比即可求得答案.【題目詳解】解:(1)50,28,8;(2)(1-8%-32%-16%-4%)×360°=40%×360°=144°.即扇形統(tǒng)計(jì)圖中扇形C的圓心角度數(shù)為144°;(3)1000×=560(人).即每月零花錢的數(shù)額x元在60≤x<120范圍的人數(shù)為560人.【題目點(diǎn)撥】本題考核知識(shí)點(diǎn):統(tǒng)計(jì)圖表.解題關(guān)鍵點(diǎn):從統(tǒng)計(jì)圖表獲取信息,用樣本估計(jì)總體.19、(1)AE=DF,AE⊥DF,理由見解析;(2)成立,CE:CD=或2;(3)【解題分析】試題分析:(1)根據(jù)正方形的性質(zhì),由SAS先證得△ADE≌△DCF.由全等三角形的性質(zhì)得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有兩種情況:①當(dāng)AC=CE時(shí),設(shè)正方形ABCD的邊長(zhǎng)為a,由勾股定理求出AC=CE=a即可;②當(dāng)AE=AC時(shí),設(shè)正方形的邊長(zhǎng)為a,由勾股定理求出AC=AE=a,根據(jù)正方形的性質(zhì)知∠ADC=90°,然后根據(jù)等腰三角形的性質(zhì)得出DE=CD=a即可;(3)由(1)(2)知:點(diǎn)P的路徑是一段以AD為直徑的圓,設(shè)AD的中點(diǎn)為Q,連接QC交弧于點(diǎn)P,此時(shí)CP的長(zhǎng)度最大,再由勾股定理可得QC的長(zhǎng),再求CP即可.試題解析:(1)AE=DF,AE⊥DF,理由是:∵四邊形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵動(dòng)點(diǎn)E,F(xiàn)分別從D,C兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DC,CB上移動(dòng),∴DE=CF,在△ADE和△DCF中,∴,∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE⊥DF;(2)(1)中的結(jié)論還成立,有兩種情況:①如圖1,當(dāng)AC=CE時(shí),設(shè)正方形ABCD的邊長(zhǎng)為a,由勾股定理得,,則;②如圖2,當(dāng)AE=AC時(shí),設(shè)正方形ABCD的邊長(zhǎng)為a,由勾股定理得:,∵四邊形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;即CE:CD=或2;(3)∵點(diǎn)P在運(yùn)動(dòng)中保持∠APD=90°,∴點(diǎn)P的路徑是以AD為直徑的圓,如圖3,設(shè)AD的中點(diǎn)為Q,連接CQ并延長(zhǎng)交圓弧于點(diǎn)P,此時(shí)CP的長(zhǎng)度最大,∵在Rt△QDC中,∴,即線段CP的最大值是.點(diǎn)睛:此題主要考查了正方形的性質(zhì),勾股定理,圓周角定理,全等三角形的性質(zhì)與判定,等腰三角形的性質(zhì),三角形的內(nèi)角和定理,能綜合運(yùn)用性質(zhì)進(jìn)行推擠是解此題的關(guān)鍵,用了分類討論思想,難度偏大.20、(1)y=x﹣3(2)1【解題分析】

(1)由已知先求出a,得出點(diǎn)A的坐標(biāo),再把A的坐標(biāo)代入一次函數(shù)y=kx-3求出k的值即可求出一次函數(shù)的解析式;(2)易求點(diǎn)B、C的坐標(biāo)分別為(n,),(n,n-3).設(shè)直線y=x-3與x軸、y軸分別交于點(diǎn)D、E,易得OD=OE=3,那么∠OED=45°.根據(jù)平行線的性質(zhì)得到∠BCA=∠OED=45°,所以當(dāng)△ABC是等腰直角三角形時(shí)只有AB=AC一種情況.過點(diǎn)A作AF⊥BC于F,根據(jù)等腰三角形三線合一的性質(zhì)得出BF=FC,依此得出方程-1=1-(n-3),解方程即可.【題目詳解】解:(1)∵反比例y=的圖象過點(diǎn)A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函數(shù)y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函數(shù)的解析式為y=x﹣3;(2)由題意可知,點(diǎn)B、C的坐標(biāo)分別為(n,),(n,n﹣3).設(shè)直線y=x﹣3與x軸、y軸分別交于點(diǎn)D、E,如圖,當(dāng)x=0時(shí),y=﹣3;當(dāng)y=0時(shí),x=3,∴OD=OE,∴∠OED=45°.∵直線x=n平行于y軸,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一種情況,過點(diǎn)A作AF⊥BC于F,則BF=FC,F(xiàn)(n,1),∴﹣1=1﹣(n﹣3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.【題目點(diǎn)撥】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,待定系數(shù)法求一次函數(shù)的解析式,等腰直角三角形的性質(zhì),難度適中.21、△A′DE是等腰三角形;證明過程見解析.【解題分析】試題分析:當(dāng)四邊形EDD′F為菱形時(shí),△A′DE是等腰三角形,△A′DE≌△EFC′.先證明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判斷△DA′E的形狀.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根據(jù)A′D=DE=EF即可證明.試題解析:當(dāng)四邊形EDD′F為菱形時(shí),△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四邊形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,∠EA∴△A′DE≌△EFC′.考點(diǎn):1.菱形的性質(zhì);2.全等三角形的判定;3.平移的性質(zhì).22、(1)4,補(bǔ)全統(tǒng)計(jì)圖見詳解.(2)10;20;72.(3)見詳解.【解題分析】

(1)根據(jù)喜歡籃球的人數(shù)與所占的百分比列式計(jì)算即可求出學(xué)生的總?cè)藬?shù),再求出喜歡足球的人數(shù),然后補(bǔ)全統(tǒng)計(jì)圖即可;

(2)分別求出喜歡排球、喜歡足球的百分比即可得到m、n的值,用喜歡足球的人數(shù)所占的百分比乘以360°即可;

(3)畫出樹狀圖,然后根據(jù)概率公式列式計(jì)算即可得解.【題目詳解】解:(1)九(1)班的學(xué)生人數(shù)為:12÷30%=40(人),喜歡足球的人數(shù)為:40?4?12?16=40?32=8(人),補(bǔ)全統(tǒng)計(jì)圖如圖所示;(2)∵×100%=10%,×100%=20%,∴m=10,n=20,表示“足球”的扇形的圓心角是20%×360°=72°;故答案為(1)40;(2)10;20;72;(3)根據(jù)題意畫出樹狀圖如下:一共有12種情況,恰好是1男1女的情況有6種,∴P(恰好是1男1女)==.23、(1)y=12x2-x-4(2)點(diǎn)M的坐標(biāo)為(2,-4)(3)-83【解題分析】【分析】(1)設(shè)交點(diǎn)式y(tǒng)=a(x+2)(x-4),然后把C點(diǎn)坐標(biāo)代入求出a即可得到拋物線解析式;

(2)連接OM,設(shè)點(diǎn)M的坐標(biāo)為m,1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論