![2024屆云南省曲靖市麒麟?yún)^(qū)六中高一數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁](http://file4.renrendoc.com/view11/M00/27/26/wKhkGWV2QeOAC7HtAAGuZUeA0co048.jpg)
![2024屆云南省曲靖市麒麟?yún)^(qū)六中高一數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁](http://file4.renrendoc.com/view11/M00/27/26/wKhkGWV2QeOAC7HtAAGuZUeA0co0482.jpg)
![2024屆云南省曲靖市麒麟?yún)^(qū)六中高一數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁](http://file4.renrendoc.com/view11/M00/27/26/wKhkGWV2QeOAC7HtAAGuZUeA0co0483.jpg)
![2024屆云南省曲靖市麒麟?yún)^(qū)六中高一數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁](http://file4.renrendoc.com/view11/M00/27/26/wKhkGWV2QeOAC7HtAAGuZUeA0co0484.jpg)
![2024屆云南省曲靖市麒麟?yún)^(qū)六中高一數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁](http://file4.renrendoc.com/view11/M00/27/26/wKhkGWV2QeOAC7HtAAGuZUeA0co0485.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆云南省曲靖市麒麟?yún)^(qū)六中高一數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.已知唯一的零點在區(qū)間、、內(nèi),那么下面命題錯誤的A.函數(shù)在或,內(nèi)有零點B.函數(shù)在內(nèi)無零點C.函數(shù)在內(nèi)有零點D.函數(shù)在內(nèi)不一定有零點2.下列函數(shù)中,既是偶函數(shù)又在單調(diào)遞增的函數(shù)是()A. B.C. D.3.已知函數(shù)是定義域為的奇函數(shù),且,當(dāng)時,,則()A. B.C. D.4.若不等式(>0,且≠1)在[1,2]上恒成立,則的取值范圍是A.(1,2) B.(2,)C.(0,1)(2,) D.(0,)5.已知,則的最小值為()A.2 B.3C.4 D.56.函數(shù)的圖像大致為A. B.C. D.7.玉雕在我國歷史悠久,擁有深厚的文化底蘊,數(shù)千年來始終以其獨特的內(nèi)涵與魅力深深吸引著世人.玉雕壁畫是采用傳統(tǒng)的手工雕刻工藝,加工生產(chǎn)成的玉雕工藝畫.某扇形玉雕壁畫尺寸(單位:)如圖所示,則該壁畫的扇面面積約為()A. B.C. D.8.為了給地球減負(fù),提高資源利用率,垃圾分類在全國漸成風(fēng)尚,假設(shè)2021年兩市全年用于垃圾分類的資金均為萬元.在此基礎(chǔ)上,市每年投入的資金比上一年增長20%,市每年投入的資金比上一年增長50%,則市用于垃圾分類的資金開始超過市的兩倍的年份是()(參考數(shù)據(jù):)A.2022年 B.2023年C.2024年 D.2025年9.函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對稱,則函數(shù)的單調(diào)遞減區(qū)間為A. B.C. D.10.已知實數(shù)x,y滿足,那么的最大值為()A. B.C.1 D.211.天文學(xué)中為了衡量星星的明暗程度,古希臘天文學(xué)家喜帕恰斯(,又名依巴谷)在公元前二世紀(jì)首先提出了星等這個概念.星等的數(shù)值越小,星星就越亮;星等的數(shù)值越大,它的光就越暗.到了1850年,由于光度計在天體光度測量中的應(yīng)用,英國天文學(xué)家普森()又提出了衡量天體明暗程度的亮度的概念.天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足.其中星等為的星的亮度為.已知“心宿二”的星等是1.00.“天津四”的星等是1.25.“心宿二”的亮度是“天津四”的倍,則與最接近的是(當(dāng)較小時,)A.1.24 B.1.25C.1.26 D.1.2712.下列函數(shù)在定義域內(nèi)為奇函數(shù),且有最小值的是A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知函數(shù),的最大值為3,最小值為2,則實數(shù)的取值范圍是________.14.已知,則______.15.函數(shù)的圖象為,以下結(jié)論中正確的是______(寫出所有正確結(jié)論的編號).①圖象關(guān)于直線對稱;②圖象關(guān)于點對稱;③由的圖象向右平移個單位長度可以得到圖象;④函數(shù)在區(qū)間內(nèi)是增函數(shù).16.函數(shù)的零點個數(shù)為_________.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知OPQ是半徑為1,圓心角為2θ(θ為定值)的扇形,A是扇形弧上的動點,四邊形ABCD是扇形內(nèi)的內(nèi)接矩形,記∠AOP=(0<<θ)(1)用表示矩形ABCD的面積S;(2)若θ=,求當(dāng)取何值時,矩形面積S最大?并求出這個最大面積18.已知直線與的交點為.(1)求交點的坐標(biāo);(2)求過交點且平行于直線的直線方程.19.已知函數(shù)的圖象在直線的下方且無限接近直線.(1)判斷函數(shù)的單調(diào)性(寫出判斷說明即可,無需證明),并求函數(shù)解析式;(2)判斷函數(shù)的奇偶性并用定義證明;(3)求函數(shù)的值域.20.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<)的圖象如圖所示(1)求函數(shù)f(x)的解析式及其對稱軸方程(2)求函數(shù)f(x)在區(qū)間[﹣,﹣]上的最大值和最小值,并指出取得最值時的x的值21.在充分競爭的市場環(huán)境中,產(chǎn)品的定價至關(guān)重要,它將影響產(chǎn)品的銷量,進而影響生產(chǎn)成本、品牌形象等某公司根據(jù)多年的市場經(jīng)驗,總結(jié)得到了其生產(chǎn)的產(chǎn)品A在一個銷售季度的銷量單位:萬件與售價單位:元之間滿足函數(shù)關(guān)系,A的單件成本單位:元與銷量y之間滿足函數(shù)關(guān)系當(dāng)產(chǎn)品A的售價在什么范圍內(nèi)時,能使得其銷量不低于5萬件?當(dāng)產(chǎn)品A的售價為多少時,總利潤最大?注:總利潤銷量售價單件成本22.(1)計算(2)已知,求的值
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、C【解析】利用零點所在的區(qū)間之間的關(guān)系,將唯一的零點所在的區(qū)間確定出,則其他區(qū)間就不會存在零點,進行選項的正誤篩選【詳解】解:由題意,唯一的零點在區(qū)間、、內(nèi),可知該函數(shù)的唯一零點在區(qū)間內(nèi),在其他區(qū)間不會存在零點.故、選項正確,函數(shù)的零點可能在區(qū)間內(nèi),也可能在內(nèi),故項不一定正確,函數(shù)的零點可能在區(qū)間內(nèi),也可能在內(nèi),故函數(shù)在內(nèi)不一定有零點,項正確故選:【點睛】本題考查函數(shù)零點的概念,考查函數(shù)零點的確定區(qū)間,考查命題正誤的判定.注意到命題說法的等價說法在判斷中的作用2、B【解析】由奇偶性排除,再由增減性可選出正確答案.【詳解】項為奇函數(shù),項為非奇非偶函數(shù)函數(shù),為偶函數(shù),項中,在單減,項中,在單調(diào)遞增.故選:B3、A【解析】由奇偶性結(jié)合得出,再結(jié)合解析式得出答案.【詳解】由函數(shù)是定義域為的奇函數(shù),且,,而,則故選:A4、B【解析】分類討論:①若a>1,由題意可得:在區(qū)間上恒成立,即在區(qū)間上恒成立,則,結(jié)合反比例函數(shù)的單調(diào)性可知當(dāng)時,,此時;②若0<a<1,由題意可得:在區(qū)間上恒成立,即,,函數(shù),結(jié)合二次函數(shù)的性質(zhì)可知,當(dāng)時,取得最大值1,此時要求,與矛盾.綜上可得:的取值范圍是(2,).本題選擇B選項.點睛:在解決與對數(shù)函數(shù)相關(guān)的比較大小或解不等式問題時,要優(yōu)先考慮利用對數(shù)函數(shù)的單調(diào)性來求解.在利用單調(diào)性時,一定要明確底數(shù)a的取值對函數(shù)增減性的影響,及真數(shù)必須為正的限制條件5、A【解析】由可得,將整理為,再利用基本不等式即可求解.【詳解】因為,所以,所以,當(dāng)且僅當(dāng),即時取等號,所以的最小值為.故選:A6、A【解析】詳解】由得,故函數(shù)的定義域為又,所以函數(shù)為奇函數(shù),排除B又當(dāng)時,;當(dāng)時,.排除C,D.選A7、D【解析】利用扇形的面積公式,利用大扇形面積減去小扇形面積即可.【詳解】如圖,設(shè),,由弧長公式可得解得,,設(shè)扇形,扇形的面積分別為,則該壁畫的扇面面積約為.故選:.8、D【解析】設(shè)經(jīng)過年后,市投入資金為萬元,市投入資金為萬元,即可表示出、,由題意可得,利用對數(shù)的運算性質(zhì)解出的取值范圍即可【詳解】解:設(shè)經(jīng)過年后,市投入資金為萬元,則,市投入資金為萬元,則由題意可得,即,即,即,即所以,所以,即2025年該市用于垃圾分類的資金開始超過市的兩倍;故選:D9、D【解析】先由函數(shù)是函數(shù)的反函數(shù),所以,再求得,再求函數(shù)的定義域,再結(jié)合復(fù)合函數(shù)的單調(diào)性求解即可.【詳解】解:由題意函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對稱知,函數(shù)是函數(shù)的反函數(shù),所以,即,要使函數(shù)有意義,則,即,解得,設(shè),則函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.因為函數(shù)在定義域上為增函數(shù),所以由復(fù)合函數(shù)的單調(diào)性性質(zhì)可知,則此函數(shù)的單調(diào)遞減區(qū)間是,故選D【點睛】本題考查了函數(shù)的反函數(shù)的求法及復(fù)合函數(shù)的單調(diào)性,重點考查了函數(shù)的定義域,屬中檔題.10、C【解析】根據(jù)重要不等式即可求最值,注意等號成立條件.【詳解】由,可得,當(dāng)且僅當(dāng)或時等號成立.故選:C.11、C【解析】根據(jù)題意,代值計算,即可得,再結(jié)合參考公式,即可估算出結(jié)果.【詳解】根據(jù)題意可得:可得,解得,根據(jù)參考公式可得,故與最接近的是.故選:C.【點睛】本題考查對數(shù)運算,以及數(shù)據(jù)的估算,屬基礎(chǔ)題.12、D【解析】選項A中,函數(shù)為奇函數(shù),但無最小值,故滿足題意選項B中,函數(shù)為偶函數(shù),不合題意選項C中,函數(shù)為奇函數(shù),但無最小值,故不合題意選項D中,函數(shù),為奇函數(shù),且有最小值,符合題意選D二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】畫出函數(shù)的圖像,對稱軸為,函數(shù)在對稱軸的位置取得最小值2,令,可求得,或,進而得到參數(shù)范圍.【詳解】函數(shù)的圖象是開口朝上,且以直線為對稱的拋物線,當(dāng)時,函數(shù)取最小值2,令,則,或,若函數(shù)在上的最大值為3,最小值為2,則,故答案為:.14、【解析】利用商數(shù)關(guān)系,由得到代入求解.【詳解】方法一:,則.方法二:分子分母同除,得.故答案為:【點睛】本題主要考查同角三角函數(shù)基本關(guān)系式的應(yīng)用,還考查了運算求解的能力,屬于基礎(chǔ)題.15、①②④【解析】利用整體代入的方式求出對稱中心和對稱軸,分析單調(diào)區(qū)間,利用函數(shù)的平移方式檢驗平移后的圖象.【詳解】由題意,,令,,當(dāng)時,即函數(shù)的一條對稱軸,所以①正確;令,,當(dāng)時,,所以是函數(shù)的一個對稱中心,所以②正確;當(dāng),,在區(qū)間內(nèi)是增函數(shù),所以④正確;的圖象向右平移個單位長度得到,與函數(shù)不相等,所以③錯誤.故答案為:①②④.16、3【解析】作出函數(shù)圖象,根據(jù)函數(shù)零點與函數(shù)圖象的關(guān)系,直接判斷零點個數(shù).【詳解】作出函數(shù)圖象,如下,由圖象可知,函數(shù)有3個零點(3個零點分別為,0,2).故答案為:3三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)S=(0<<θ);(2)當(dāng)α=時,S取得最大值為2﹣【解析】(1)由題意可求得∠ADO,△COD為等腰三角形,在△OAD中利用正弦定理求出AD,從而可用表示矩形ABCD的面積S;(2)由(1)可得,然后由的范圍結(jié)合正弦函數(shù)的性質(zhì)可求出其最大值【詳解】解:(1)由題意可得AD∥OE∥CB,∴∠POE=∠PDA=θ,∴∠ODC==∠DCO,∠BOA=2θ﹣2,△COD為等腰三角形故AB=2sin(θ﹣),再由∠ADO==π﹣θ,△OAD中,利用正弦定理可得,化簡可得AD=故矩形ABCD的面積S=f()=AB?AD=(0<<θ)(2)θ=,由(1)可得S=f()===再由0<<可得<2+<,故當(dāng)2+=,即當(dāng)=時,S=f()取得最大值為2﹣18、(1)點的坐標(biāo)是;(2)直線方程為.【解析】(1)聯(lián)立兩條直線的方程得到交點坐標(biāo);(2)根據(jù)條件可設(shè)所求直線方程為,將P點坐標(biāo)代入得到參數(shù)值解析:(1)由解得所以點的坐標(biāo)是.(2)因為所求直線與平行,所以設(shè)所求直線方程為把點坐標(biāo)代入得,得故所求的直線方程為.19、(1)函數(shù)在上單調(diào)遞增,(2)奇函數(shù),證明見解析(3)【解析】(1)根據(jù)函數(shù)的單調(diào)性情況直接判斷;(2)根據(jù)奇偶性的定義直接判斷;(3)由奇偶性直接判斷值域.【小問1詳解】因為隨著增大,減小,即增大,故隨增大而增大,所以函數(shù)在上單調(diào)遞增.由的圖象在直線下方,且無限接近直線,得,所以函數(shù)的解析式.【小問2詳解】由(1)得,整理得,函數(shù)定義域關(guān)于原點對稱,,所以函數(shù)是奇函數(shù).小問3詳解】方法一:由(1)知,由(2)知,函數(shù)圖象關(guān)于原點中心對稱,故,所以函數(shù)的值域為.方法二:由,得,得,得,得,得,所以函數(shù)的值域為.20、(1);對稱軸(2)當(dāng)時,;當(dāng)時,【解析】(1)由圖知,,由,可求得,由可求得;(2)根據(jù)的范圍求出的取值范圍,再根據(jù)正弦函數(shù)的性質(zhì)求解.【詳解】解:由圖可知,,又圖象過點,解得,令,解得,故函數(shù)的對稱軸為,(2)由正弦函數(shù)的性質(zhì)可知,當(dāng)即時當(dāng)即時故當(dāng)時,;當(dāng)時,【點睛】本題考查:由的部分圖象確定其解析式,考查函數(shù)的圖象變換及三角函數(shù)性質(zhì)的綜合應(yīng)用,屬于中檔題21、(1)(2)14元【解析】(1)根據(jù)題中所給的解析式,分情況列出其滿足的不等式組,求得結(jié)果;(2)根據(jù)題意,列出利潤對應(yīng)的解析式,分段求最值,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國汽車空調(diào)鼓風(fēng)電機行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國高速銅纜行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球虛擬首席信息安全官(VCISO)服務(wù)行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國充電保護裝置行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球矯形外科行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球機器人滾柱絲杠行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國機器人地板洗干一體機行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國LLDPE纏繞膜行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國AKD中性施膠劑行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球數(shù)字創(chuàng)意展覽服務(wù)行業(yè)調(diào)研及趨勢分析報告
- 電力溝施工組織設(shè)計-電纜溝
- 《法律援助》課件
- 小兒肺炎治療與護理
- 《高處作業(yè)安全》課件
- 春節(jié)后收心安全培訓(xùn)
- 小學(xué)教師法制培訓(xùn)課件
- 電梯操作證及電梯維修人員資格(特種作業(yè))考試題及答案
- 市政綠化養(yǎng)護及市政設(shè)施養(yǎng)護服務(wù)方案(技術(shù)方案)
- SLT824-2024 水利工程建設(shè)項目文件收集與歸檔規(guī)范
- 鍋爐本體安裝單位工程驗收表格
- 報價單(產(chǎn)品報價單)
評論
0/150
提交評論