版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆陜西省西安市西北工業(yè)大學(xué)高一數(shù)學(xué)第一學(xué)期期末達標檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12小題,共60分)1.在一次數(shù)學(xué)實驗中,某同學(xué)運用圖形計算器采集到如下一組數(shù)據(jù):x01.002.03.0y0.240.5112.023.988.02在四個函數(shù)模型(a,b為待定系數(shù))中,最能反映,y函數(shù)關(guān)系的是().A. B.C. D.2.若,則()A. B.C. D.3.圓:與圓:的位置關(guān)系是A.相交 B.相離C.外切 D.內(nèi)切4.設(shè),,,則、、的大小關(guān)系是()A. B.C. D.5.已知映射f:A→B,其中A={a,b},B={1,2},已知a的象為1,則b的象為A.1,2中的一個 B.1,2C.2 D.無法確定6.已知,均為正實數(shù),且,則的最小值為A.20 B.24C.28 D.327.已知冪函數(shù)y=f(x)經(jīng)過點(3,),則f(x)()A.是偶函數(shù),且在(0,+∞)上是增函數(shù)B.是偶函數(shù),且在(0,+∞)上是減函數(shù)C.是奇函數(shù),且在(0,+∞)上是減函數(shù)D.是非奇非偶函數(shù),且在(0,+∞)上是增函數(shù)8.已知f(x)、g(x)均為[﹣1,3]上連續(xù)不斷的曲線,根據(jù)下表能判斷方程f(x)=g(x)有實數(shù)解的區(qū)間是()x﹣10123f(x)﹣06773.0115.4325.9807.651g(x)﹣0.5303.4514.8905.2416.892A.(﹣1,0) B.(1,2)C.(0,1) D.(2,3)9.四名學(xué)生按任意次序站成一排,若不相鄰的概率是()A. B.C. D.10.將函數(shù)圖象向右平移個單位得到函數(shù)的圖象,已知的圖象關(guān)于原點對稱,則的最小正值為()A.2 B.3C.4 D.611.若函數(shù)y=|x|(x-1)的圖象與直線y=2(x-t)有且只有2個公共點,則實數(shù)t的所有取值之和為()A.2 B.C.1 D.12.設(shè),給出下列四個結(jié)論:①;②;③;④.其中所有的正確結(jié)論的序號是A.①② B.②③C.①②③ D.②③④二、填空題(本大題共4小題,共20分)13.已知則________14.某高中校為了減輕學(xué)生過重的課業(yè)負擔,提高育人質(zhì)量,在全校所有的1000名高中學(xué)生中隨機抽取了100名學(xué)生,了解他們完成作業(yè)所需要的時間(單位:h),將數(shù)據(jù)按照0.5,1,1,1.5,1.5,2,2,2.5,2.5,3,3,3.5,分成6組,并將所得的數(shù)據(jù)繪制成頻率分布直方圖(如圖所示).由圖中數(shù)據(jù)可知a=___________;估計全校高中學(xué)生中完成作業(yè)時間不少于3h的人數(shù)為15.已知P為△ABC所在平面外一點,且PA,PB,PC兩兩垂直,則下列命題:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC,其中正確命題的個數(shù)是________16.已知函數(shù),且,則__________三、解答題(本大題共6小題,共70分)17.已知全集,求:(1);(2).18.已知集合,.(1)若,求實數(shù)的值;(2)若,求實數(shù)的取值范圍.19.已知函數(shù)(1)當時,在上恒成立,求的取值范圍;(2)當時,解關(guān)于的不等式20.已知函數(shù)(1)求當f(x)取得最大值時,x的取值集合;(2)完成下列表格并在給定的坐標系中,畫出函數(shù)f(x)在上的圖象.xy21.已知函數(shù)=的部分圖象如圖所示(1)求的值;(2)求的單調(diào)增區(qū)間;(3)求在區(qū)間上的最大值和最小值22.如圖,三棱臺DEF-ABC中,AB=2DE,G,H分別為AC,BC的中點(1)求證:平面ABED∥平面FGH;(2)若CF⊥BC,AB⊥BC,求證:平面BCD⊥平面EGH.
參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】由題中表格數(shù)據(jù)畫出散點圖,由圖觀察實驗室指數(shù)型函數(shù)圖象【詳解】由題中表格數(shù)據(jù)畫出散點圖,如圖所示,觀察圖象,類似于指數(shù)函數(shù)對于A,是一次函數(shù),圖象是一條直線,所以A錯誤,對于B,是指數(shù)型函數(shù),所以B正確,對于C,是對數(shù)型函數(shù),由于表中的取到了負數(shù),所以C錯誤,對于D,是反比例型函數(shù),圖象是雙曲線,所以D錯誤,故選:B2、A【解析】令,則,所以,由誘導(dǎo)公式可得結(jié)果.【詳解】令,則,且,所以.故選:A.3、A【解析】求出兩圓的圓心和半徑,用圓心距與半徑和、差作比較,得出結(jié)論.【詳解】圓的圓心為(1,0),半徑為1,圓的圓心為(0,2),半徑為2,故兩圓圓心距為,兩半徑之和為3,兩半徑之差為1,其中,故兩圓相交,故選:A.【點睛】本題主要考查兩圓的位置關(guān)系,需要學(xué)生熟悉兩圓位置的五種情形及其判定方法,屬于基礎(chǔ)題.4、B【解析】利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性比較、、三個數(shù)與、的大小關(guān)系,由此可得出、、的大小關(guān)系.【詳解】,即,,,因此,.故選:B.5、A【解析】根據(jù)映射中象與原象定義,元素與元素的對應(yīng)關(guān)系即可判斷【詳解】映射f:A→B,其中A={a,b},B={1,2}已知a的象為1,根據(jù)映射的定義,對于集合A中的任意一個元素在集合B中都有唯一的元素和它對應(yīng),可得b=1或2,所以選A【點睛】本題考查了集合中象與原象的定義,關(guān)于對應(yīng)關(guān)系的理解.注意A集合中的任意元素在集合B中必須有對應(yīng),屬于基礎(chǔ)題6、A【解析】分析:由已知條件構(gòu)造基本不等式模型即可得出.詳解:均為正實數(shù),且,則當且僅當時取等號.的最小值為20.故選A.點睛:本題考查了基本不等式性質(zhì),“一正、二定、三相等”.7、D【解析】利用冪函數(shù)的定義求得指數(shù)的值,得到冪函數(shù)的解析式,進而結(jié)合冪函數(shù)的圖象判定單調(diào)性和奇偶性【詳解】設(shè)冪函數(shù)的解析式為,將點的坐標代入解析式得,解得,∴,函數(shù)的定義域為,是非奇非偶函數(shù),且在上是增函數(shù),故選:D.8、C【解析】設(shè)h(x)=f(x)﹣g(x),利用h(0)=f(0)﹣g(0)=﹣0.44<0,h(1)=f(1)﹣g(1)=0.542>0,即可得出結(jié)論.【詳解】設(shè)h(x)=f(x)﹣g(x),則h(0)=f(0)﹣g(0)=﹣0.44<0,h(1)=f(1)﹣g(1)=0.542>0,∴h(x)的零點在區(qū)間(0,1),故選:C.【點睛】思路點睛:該題考查的是有關(guān)零點存在性定理的應(yīng)用問題,解題思路如下:(1)先構(gòu)造函數(shù)h(x)=f(x)﹣g(x);(2)利用題中所給的有關(guān)函數(shù)值,得到h(0)=﹣0.44<0,h(1)=0.542>0;(3)利用零點存在性定理,得到結(jié)果.9、B【解析】利用捆綁法求出相鄰的概率即可求解.【詳解】四名學(xué)生按任意次序站成一排共有,相鄰的站法有,相鄰的的概率,故不相鄰的概率是.故選:B【點睛】本題考查了排列數(shù)以及捆綁法在排列中的應(yīng)用,同時考查了古典概型的概率計算公式.10、B【解析】根據(jù)圖象平移求出g(x)解析式,g(x)為奇函數(shù),則g(0)=0,據(jù)此即可計算ω的取值.【詳解】根據(jù)已知,可得,∵的圖象關(guān)于原點對稱,所以,從而,Z,所以,其最小正值為3,此時故選:B11、C【解析】可直接根據(jù)題意轉(zhuǎn)化為方程有兩個根,然后利用分類討論思想去掉絕對值再利用判別式即可求得各個t的值【詳解】由題意得方程有兩個不等實根,當方程有兩個非負根時,令時,則方程為,整理得,解得;當時,,解得,故不滿足滿足題意;當方程有一個正跟一個負根時,當時,,,解得,當時,方程為,,解得;當方程有兩個負根時,令,則方程為,解得,當,,解得,不滿足題意綜上,t的取值為和,因此t的所有取值之和為1,故選C【點睛】本題是在二次函數(shù)的基礎(chǔ)上加了絕對值,所以首先需解決絕對值,關(guān)于去絕對值直接用分類討論思想即可;關(guān)于二次函數(shù)根的分布需結(jié)合對稱軸,判別式,進而判斷,必要時可結(jié)合進行判斷12、B【解析】因為,所以①為增函數(shù),故=1,故錯誤②函數(shù)為減函數(shù),故,所以正確③函數(shù)為增函數(shù),故,故,故正確④函數(shù)為增函數(shù),,故,故錯誤點睛:結(jié)合指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)單調(diào)性可以逐一分析得出四個結(jié)論的真假性.二、填空題(本大題共4小題,共20分)13、【解析】分段函數(shù)的求值,在不同的區(qū)間應(yīng)使用不同的表達式.【詳解】,故答案為:.14、①.0.1②.50【解析】利用頻率之和為1可求a,由圖求出完成作業(yè)時間不少于3h的頻率,由頻數(shù)=總數(shù)×【詳解】由0.5×2a+0.3+0.4+0.5+0.6=1可求a=0.1;由圖可知,全校高中學(xué)生中完成作業(yè)時間不少于3h的頻率為0.5×0.1=0.05故答案為:0.1;5015、3【解析】如圖所示,∵PA⊥PC,PA⊥PB,PC∩PB=P,∴PA⊥平面PBC.又∵BC?平面PBC,∴PA⊥BC.同理PB⊥AC,PC⊥AB,但AB不一定垂直于BC.故答案為:3.16、或【解析】對分和兩類情況,解指數(shù)冪方程和對數(shù)方程,即可求出結(jié)果.【詳解】當時,因為,所以,所以,經(jīng)檢驗,滿足題意;當時,因為,所以,即,所以,經(jīng)檢驗,滿足題意.故答案為:或三、解答題(本大題共6小題,共70分)17、(1);(2)或.【解析】(1)求出集合,再根據(jù)集合間的基本運算即可求解;(2)求出,再根據(jù)集合間的基本運算即可求解.【詳解】解:(1)由,解得:,故,又,;(2)由(1)知:,或,或.18、(1)(2)或【解析】(1)求出集合,再根據(jù)列方程求解即可;(2)根據(jù)分,討論求解.【小問1詳解】由已知得,解得;【小問2詳解】當時,,得當時,或,解得或,綜合得或.19、(1)(2)答案不唯一,具體見解析【解析】(1)利用參變量分離法可求得實數(shù)的取值范圍;(2)分、、、四種情況討論,結(jié)合二次不等式的解法可求得原不等式的解集.【小問1詳解】由題意得,當時,在上恒成立,即當時,在上恒成立,不等式可變?yōu)?,令,,則,故,解得【小問2詳解】當時,解不等式,即當時,解不等式,不等式可變?yōu)椋魰r,不等式可變?yōu)?,可得;若時,不等式可變?yōu)椋敃r,,可得或;當時,,即,可得且;當時,,可得或綜上:當時,原不等式的解集是;當時,原不等式的解集是;當時,原不等式的解集是;當時,原不等式的解集是20、(1);(2)圖象見解析.【解析】(1)利用整體法求解三角函數(shù)最大值時x的取值集合;(2)填寫表格,并作圖.【小問1詳解】由,得故當f(x)取得最大值時,x的取值集合為【小問2詳解】函數(shù)f(x)在上的圖象如下:x0y0221、(1);(2)單調(diào)遞增區(qū)間為(3)時,取得最大值1;時,f(x)取得最小值【解析】(1)利用圖象的最高點和最低點的縱坐標確定振幅,由相鄰對稱軸間的距離確定函數(shù)的周期和值;(2)利用正弦函數(shù)的單調(diào)性和整體思想進行求解;(3)利用三角函數(shù)的單調(diào)性和最值進行求解試題解析:(1)由圖象知由圖象得函數(shù)最小正周期為=,則由=得(2)令..所以f(x)的單調(diào)遞增區(qū)間為(3)..當即時,取得最大值1;當即時,f(x)取得最小值22、(1)見解析(2)見解析【解析】解析:(1)在三棱臺DEFABC中,BC=2EF,H為BC的中點,BH∥EF,BH=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度物業(yè)公司保安員夜間值班與休息合同
- 二零二五年度電梯井施工與電梯設(shè)備保養(yǎng)合同
- 2025年度幼兒園招生加盟與品牌轉(zhuǎn)讓合作協(xié)議
- 二零二五年度情感關(guān)系建立合同
- 二零二五年度2025年門面房租賃與社區(qū)配套服務(wù)合同
- 二零二五年度精裝修公寓房購買與戶外休閑設(shè)施使用合同3篇
- 二零二五版奶粉生產(chǎn)廢棄物資源化利用服務(wù)合同范本頁22篇
- 2025年度影視基地場地租賃合同及影視制作服務(wù)協(xié)議3篇
- 二零二五版電子商務(wù)SET協(xié)議安全風(fēng)險評估與風(fēng)險控制合同3篇
- 二零二五版淋浴房市場推廣與廣告投放合同3篇
- 2024山西廣播電視臺招聘專業(yè)技術(shù)崗位編制人員20人歷年高頻500題難、易錯點模擬試題附帶答案詳解
- 新材料行業(yè)系列深度報告一:新材料行業(yè)研究框架
- 人教版小學(xué)英語各冊單詞表(帶英標)
- 廣東省潮州市潮安區(qū)2023-2024學(xué)年六年級上學(xué)期期末考試數(shù)學(xué)試題
- 鄉(xiāng)村治理中正式制度與非正式制度的關(guān)系解析
- 智能護理:人工智能助力的醫(yī)療創(chuàng)新
- 國家中小學(xué)智慧教育平臺培訓(xùn)專題講座
- 5G+教育5G技術(shù)在智慧校園教育專網(wǎng)系統(tǒng)的應(yīng)用
- VI設(shè)計輔助圖形設(shè)計
- 淺談小學(xué)勞動教育的開展與探究 論文
- 2023年全國4月高等教育自學(xué)考試管理學(xué)原理00054試題及答案新編
評論
0/150
提交評論