




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆山西省陽泉市陽泉中學(xué)數(shù)學(xué)高一上期末聯(lián)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.若,則()A. B.-3C. D.32.已知的三個頂點A,B,C及半面內(nèi)的一點P,若,則點P與的位置關(guān)系是A.點P在內(nèi)部 B.點P在外部C.點P在線段AC上 D.點P在直線AB上3.函數(shù)()的最大值為()A. B.1C.3 D.44.已知,則().A. B.C. D.5.函數(shù)的零點所在區(qū)間是()A. B.C. D.6.下列函數(shù)中,既是奇函數(shù)又在上有零點的是A. B.C D.7.滿足2,的集合A的個數(shù)是A.2 B.3C.4 D.88.函數(shù)零點所在的大致區(qū)間的A. B.C. D.9.設(shè),,,則,,的大小關(guān)系()A. B.C. D.10.如圖,一個空間幾何體的正視圖和側(cè)視圖都是邊長為2的正方形,俯視圖是一個圓,那么這個幾何體的側(cè)面積為()A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.如圖,在正方體中,、分別是、上靠近點的三等分點,則異面直線與所成角的大小是______.12.角的終邊經(jīng)過點,且,則________.13.已知函數(shù),,則它的單調(diào)遞增區(qū)間為______14.如圖,已知四棱錐P-ABCD,底面ABCD為正方形,PA⊥平面ABCD.給出下列命題:①PB⊥AC;②平面PAB與平面PCD的交線與AB平行;③平面PBD⊥平面PAC;④△PCD為銳角三角形.其中正確命題的序號是________15.在平面直角坐標(biāo)系中,點在單位圓O上,設(shè),且.若,則的值為______________.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.記函數(shù)的定義域為集合,函數(shù)的定義域為集合(Ⅰ)求集合;(Ⅱ)若,求實數(shù)的取值范圍17.如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.18.已知函數(shù)(1)判斷函數(shù)在上的單調(diào)性,并用定義法證明你的結(jié)論;(2)若,求函數(shù)的最大值和最小值.19.已知函數(shù).(1)判斷的奇偶性并證明;(2)用函數(shù)單調(diào)性的定義證明在區(qū)間上單調(diào)遞增;(3)若對,不等式恒成立,求實數(shù)的取值范圍.20.已知集合,.(1)求;(2)求.21.我們知道:人們對聲音有不同感覺,這與它的強度有關(guān)系,聲音的強度用(單位:)表示,但在實際測量時,常用聲音的強度水平(單位:分貝)表示,它們滿足公式:(,其中()),是人們能聽到的最小強度,是聽覺的開始.請回答以下問題:(Ⅰ)樹葉沙沙聲的強度為(),耳語的強度為(),無線電廣播的強度為(),試分別求出它們的強度水平;(Ⅱ)某小區(qū)規(guī)定:小區(qū)內(nèi)公共場所的聲音的強度水平必須保持在分貝以下(不含分貝),試求聲音強度的取值范圍
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、B【解析】利用同角三角函數(shù)關(guān)系式中的商關(guān)系進行求解即可.【詳解】由,故選:B2、C【解析】由平面向量的加減運算得:,所以:,由向量共線得:即點P在線段AC上,得解【詳解】因為:,所以:,所以:,即點P在線段AC上,故選C.【點睛】本題考查了平面向量的加減運算及向量共線,屬簡單題.3、C【解析】對函數(shù)進行化簡,即可求出最值.【詳解】,∴當(dāng)時,取得最大值為3.故選:C.4、C【解析】將分子分母同除以,再將代入求解.【詳解】.故選:C【點睛】本題主要考查同角三角函數(shù)基本關(guān)系式,還考查了運算求解的能力,屬于基礎(chǔ)題.5、B【解析】判斷函數(shù)的單調(diào)性,根據(jù)函數(shù)零點存在性定理即可判斷.【詳解】函數(shù)的定義域為,且函數(shù)在上單調(diào)遞減;在上單調(diào)遞減,所以函數(shù)為定義在上的連續(xù)減函數(shù),又當(dāng)時,,當(dāng)時,,兩函數(shù)值異號,所以函數(shù)的零點所在區(qū)間是,故選:B.6、D【解析】選項中的函數(shù)均為奇函數(shù),其中函數(shù)與函數(shù)在上沒有零點,所以選項不合題意,中函數(shù)為偶函數(shù),不合題意;中函數(shù)的一個零點為,符合題意,故選D.7、C【解析】由條件,根據(jù)集合的子集的概念與運算,即可求解【詳解】由題意,可得滿足2,的集合A為:,,,2,,共4個故選C【點睛】本題主要考查了集合的定義,集合與集合的包含關(guān)系的應(yīng)用,其中熟記集合的子集的概念,準(zhǔn)確利用列舉法求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題8、B【解析】函數(shù)是單調(diào)遞增函數(shù),則只需時,函數(shù)在區(qū)間(a,b)上存在零點.【詳解】函數(shù),x>0上單調(diào)遞增,,函數(shù)f(x)零點所在的大致區(qū)間是;故選B【點睛】本題考查利用函數(shù)零點存在性定義定理求解函數(shù)的零點的范圍,屬于基礎(chǔ)題;解題的關(guān)鍵是首先要判斷函數(shù)的單調(diào)性,再根據(jù)零點存在的條件:已知函數(shù)在(a,b)連續(xù),若確定零點所在的區(qū)間.9、A【解析】根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比大小.【詳解】由已知得,,且,,所以.故選:A.10、A【解析】幾何體是一個圓柱,圓柱的底面是一個直徑為2的圓,圓柱的高是2,側(cè)面展開圖是一個矩形,進而求解.【詳解】由三視圖可知該幾何體是底面半徑為1高為2的圓柱,∴該幾何體的側(cè)面積為,故選:A【點睛】本題考查三視圖和圓柱的側(cè)面積,關(guān)鍵在于由三視圖還原幾何體.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、【解析】連接,可得出,證明出四邊形為平行四邊形,可得,可得出異面直線與所成角為或其補角,分析的形狀,即可得出的大小,即可得出答案.【詳解】連接、、,,,在正方體中,,,,所以,四邊形為平行四邊形,,所以,異面直線與所成的角為.易知為等邊三角形,.故答案為:.【點睛】本題考查異面直線所成角的計算,一般利用平移直線法,選擇合適的三角形求解,考查計算能力,屬于中等題.12、【解析】由題意利用任意角的三角函數(shù)的定義直接計算【詳解】角的終邊經(jīng)過點,且,解得.故答案為:13、(區(qū)間寫成半開半閉或閉區(qū)間都對);【解析】由得因為,所以單調(diào)遞增區(qū)間為14、②③【解析】設(shè)AC∩BD=O,由題意證明AC⊥PO,由已知可得AC⊥PA,與在同一平面內(nèi)過一點有且只有一條直線與已知直線垂直矛盾說明①錯誤;由線面平行的判定和性質(zhì)說明②正確;由線面垂直的判定和性質(zhì)說明③正確;由勾股定理即可判斷,說明④錯誤【詳解】設(shè)AC∩BD=O,如圖,①若PB⊥AC,∵AC⊥BD,則AC⊥平面PBD,∴AC⊥PO,又PA⊥平面ABCD,則AC⊥PA,在平面PAC內(nèi)過P有兩條直線與AC垂直,與在同一平面內(nèi)過一點有且只有一條直線與已知直線垂直矛盾,①錯誤;②∵CD∥AB,則CD∥平面PAB,∴平面PAB與平面PCD的交線與AB平行,②正確;③∵PA⊥平面ABCD,∴平面PAC⊥平面ABCD,又BD⊥AC,∴BD⊥平面PAC,則平面PBD⊥平面PAC,③正確;④∵PD2=PA2+AD2,PC2=PA2+AC2,AC2=AD2+CD2,AD=CD,∴PD2+CD2=PC2,∴④△PCD為直角三角形,④錯誤,故答案為:②③15、【解析】由題意,,,只需求出即可.【詳解】由題意,,因為,所以,,所以.故答案為:【點睛】本題考查三角恒等變換中的給值求值問題,涉及到三角函數(shù)的定義及配角的方法,考查學(xué)生的運算求解能力,是一道中檔題.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(Ⅰ);(Ⅱ)【解析】(1)根據(jù)根式有意義的條件,并結(jié)合指數(shù)函數(shù)的性質(zhì)解不等式得到集合A;(2)先求解集合,由得到A是B的子集,根據(jù)集合包含關(guān)系列出關(guān)于a的不等式,求得a的取值范圍【詳解】(Ⅰ)由已知得:(Ⅱ)由∵,∴或∵,∴,∴17、(1)見解析(2)見解析【解析】(1)先由平面幾何知識證明,再由線面平行判定定理得結(jié)論;(2)先由面面垂直性質(zhì)定理得平面,則,再由AB⊥AD及線面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC試題解析:證明:(1)在平面內(nèi),因為AB⊥AD,,所以.又因為平面ABC,平面ABC,所以EF∥平面ABC.(2)因為平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因為平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因為AC平面ABC,所以AD⊥AC.點睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直18、(1)減函數(shù),證明見解析(2),【解析】(1)根據(jù)定義法證明函數(shù)單調(diào)性即可求解;(2)根據(jù)(1)中的單調(diào)性求解最值即可.【小問1詳解】任取,,且則-因為,所以,所以,即,所以在區(qū)間上是減函數(shù)【小問2詳解】因為函數(shù)在區(qū)間上是減函數(shù),所以,.19、(1)為奇函數(shù),證明見解析(2)證明見解析(3)【解析】(1)求出函數(shù)的定義域,然后驗證、之間的關(guān)系,即可證得函數(shù)為奇函數(shù);(2)任取、,且,作差,因式分解后判斷差值的符號,即可證得結(jié)論成立;(3)由參變量分離法可得出,令,求出函數(shù)在上的最大值,即可得出實數(shù)的取值范圍.【小問1詳解】證明:函數(shù)為奇函數(shù),理由如下:函數(shù)的定義域為,,所以為奇函數(shù).【小問2詳解】證明:任取、,且,則,,,所以,,所以在區(qū)間上單調(diào)遞增.【小問3詳解】解:不等式在上恒成立等價于在上恒成立,令,因為,所以,則有在恒成立,令,,則,所以,所以實數(shù)的取值范圍為.20、(1)(2)【解析】(1)分別求兩個集合,再求交集;(2)先求,再求.【小問1詳解】,解得:,即,,解得:,即,;【小問2詳解】,.21、(Ⅰ)0,20,40;(Ⅱ)大于或等于,同時應(yīng)小于.【解析】(Ⅰ)將樹葉沙沙聲的強度,耳語的強度,無線電廣播的強度,分別代入公式進行求解,即可求出所求;(Ⅱ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆青海省平安區(qū)第一高級中學(xué)高三適應(yīng)性調(diào)研考試化學(xué)試題含解析
- 公司月份安全環(huán)保工作總結(jié)
- 2025屆福建省廈門市湖里區(qū)雙十中學(xué)高三第二次聯(lián)考化學(xué)試卷含解析
- 2025年氣體分離及液化設(shè)備項目合作計劃書
- 一年級數(shù)學(xué)(上)計算題專項練習(xí)匯編
- 三年級數(shù)學(xué)(上)計算題專項練習(xí)附答案集錦
- 兒科安全輸液的管理
- 2025年風(fēng)力提水機組項目可行性建設(shè)方案
- 2025年超低頻測振儀項目建議書
- 2025年智能計量終端項目合作計劃書
- 托管老師培訓(xùn)
- GB/T 45156-2024安全與韌性應(yīng)急管理社區(qū)災(zāi)害預(yù)警體系實施通用指南
- 2025年中國冶金地質(zhì)總局招聘筆試參考題庫含答案解析
- 老舊小區(qū)基礎(chǔ)設(shè)施環(huán)境改造工程各項施工準(zhǔn)備方案
- 施工現(xiàn)場動火分級審批制度(3篇)
- 2024年黑龍江哈爾濱市中考化學(xué)真題卷及答案解析
- 三年級下冊兩位數(shù)乘兩位數(shù)豎式計算練習(xí)200題有答案
- 衡水中學(xué)學(xué)習(xí)計劃
- 棋牌室消防應(yīng)急預(yù)案
- 智能家居的智能門鎖
- 《公園茶室設(shè)計》課件
評論
0/150
提交評論