2024屆山東省東營市勝利第二中學高一上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第1頁
2024屆山東省東營市勝利第二中學高一上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第2頁
2024屆山東省東營市勝利第二中學高一上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第3頁
2024屆山東省東營市勝利第二中學高一上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第4頁
2024屆山東省東營市勝利第二中學高一上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆山東省東營市勝利第二中學高一上數(shù)學期末教學質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.設函數(shù),其中,,,都是非零常數(shù),且滿足,則()A. B.C. D.2.已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是()A.108cm3 B.100cm3C.92cm3 D.84cm33.設為兩條不同的直線,為三個不重合平面,則下列結論正確的是A.若,,則 B.若,,則C.若,,則 D.若,,則4.若函數(shù),在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則()A.1 B.C.2 D.35.已知函數(shù),將圖象向右平移個單位長度得到函數(shù)的圖象,若對任意,都有成立,則的值為A. B.1C. D.26.函數(shù)f(x)=若f(x)=2,則x的值是()A. B.±C.0或1 D.7.設,則A. B.C. D.8.表示集合中整數(shù)元素的個數(shù),設,,則()A.5 B.4C.3 D.29.我國東漢數(shù)學家趙爽在《周髀算經(jīng)》中利用一副“弦圖”給出了勾股定理的證明,后人稱其為“趙爽弦圖”,它是由四個全等的直角三角形與一個小正方形拼成的一個大正方形,如圖所示,在“趙爽弦圖”中,若,,,則()A. B.C. D.10.玉雕在我國歷史悠久,擁有深厚的文化底蘊,數(shù)千年來始終以其獨特的內(nèi)涵與魅力深深吸引著世人.玉雕壁畫是采用傳統(tǒng)的手工雕刻工藝,加工生產(chǎn)成的玉雕工藝畫.某扇形玉雕壁畫尺寸(單位:)如圖所示,則該壁畫的扇面面積約為()A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.已知集合A={x|2x>1},B={x|log2x<0},則?AB=___12.函數(shù)定義域為________.(用區(qū)間表示)13.設函數(shù)f(x)的定義域為R,f(x+1)為奇函數(shù),f(x+2)為偶函數(shù),當x∈[1,2]時,f(x)=ax2+b.若f(0)+f(3)=6,則f()=____________.14.已知是定義在上的奇函數(shù),當時,,則的值為________________15.已知函數(shù),那么_________.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.函數(shù).(1)求,;(2)求函數(shù)在上的最大值與最小值.17.已知函數(shù)(,且).(1)若,試比較與的大小,并說明理由;(2)若,且,,三點在函數(shù)的圖像上,記的面積為,求的表達式,并求的值域.18.我們知道:設函數(shù)的定義域為,那么“函數(shù)的圖象關于原點成中心對稱圖形”的充要條件是“,”.有同學發(fā)現(xiàn)可以將其推廣為:設函數(shù)的定義域為,那么“函數(shù)的圖象關于點成中心對稱圖形”的充要條件是“,”.(1)判斷函數(shù)的奇偶性,并證明;(2)判斷函數(shù)的圖象是否為中心對稱圖形,若是,求出其對稱中心坐標;若不是,說明理由.19.甲、乙二人獨立破譯同一密碼,甲破譯密碼的概率為0.7,乙破譯密碼的概率為0.6.記事件A:甲破譯密碼,事件B:乙破譯密碼.(1)求甲、乙二人都破譯密碼的概率;(2)求恰有一人破譯密碼的概率.20.已知函數(shù)(1)求函數(shù)的定義域,并判斷函數(shù)的奇偶性;(2)求使x的取值范圍21.已知函數(shù)??(1)試判斷函數(shù)的奇偶性;(2)求函數(shù)的值域.

參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、C【解析】代入后根據(jù)誘導公式即可求出答案【詳解】解:由題,∴,∴,故選:C【點睛】本題主要考查三角函數(shù)的誘導公式的應用,屬于基礎題2、B【解析】由三視圖可知:該幾何體是一個棱長分別為6,6,3,砍去一個三條側棱長分別為4,4,3的一個三棱錐(長方體的一個角).據(jù)此即可得出體積解:由三視圖可知:該幾何體是一個棱長分別為6,6,3,砍去一個三條側棱長分別為4,4,3的一個三棱錐(長方體的一個角)∴該幾何體的體積V=6×6×3﹣=100故選B考點:由三視圖求面積、體積3、B【解析】根據(jù)線面平行線面垂直面面垂直的定義及判定定理,逐一判斷正誤.【詳解】選項,若,,則可能平行,相交或異面:故錯選項,若,,則,故正確.選項,若,,因為,,為三個不重合平面,所以或,故錯選項,若,,則或,故錯故選:【點睛】本題考查線面平行及線面垂直的知識,注意平行關系中有一條平行即可,而垂直關系中需滿足任意性,概念辨析題.4、B【解析】根據(jù)以及周期性求得.【詳解】依題意函數(shù),在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則,即,解得.故選:B5、D【解析】利用輔助角公式化簡的解析式,再利用正弦型函數(shù)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,求得的值【詳解】,(其中,),將圖象向右平移個單位長度得到函數(shù)的圖象,得到,∴,,解得,故選D.6、A【解析】根據(jù)函數(shù)值為2,分類討論即可.【詳解】若f(x)=2,①x≤-1時,x+2=2,解得x=0(不符合,舍去);②-1<x<2時,,解得x=(符合)或x=(不符,舍去);③x≥2時,2x=2,解得x=1(不符,舍去).綜上,x=.故選:A.7、B【解析】函數(shù)在上單調(diào)遞減,所以,函數(shù)在上單調(diào)遞減,所以,所以,答案為B考點:比較大小8、C【解析】首先求出集合,再根據(jù)交集的定義求出,即可得解;【詳解】解:因為,,所以,則,,,所以;故選:C9、C【解析】利用平面向量的線性運算及平面向量的基本定理求解即可【詳解】∵∴∵∴=∴=,∴故選:C10、D【解析】利用扇形的面積公式,利用大扇形面積減去小扇形面積即可.【詳解】如圖,設,,由弧長公式可得解得,,設扇形,扇形的面積分別為,則該壁畫的扇面面積約為.故選:.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、[1,+∞)【解析】由指數(shù)函數(shù)的性質(zhì)化簡集合;由對數(shù)函數(shù)的性質(zhì)化簡集合,利用補集的定義求解即可.【詳解】,所以,故答案為.【點睛】研究集合問題,一定要抓住元素,看元素應滿足的屬性.研究兩集合的關系時,關鍵是將兩集合的關系轉(zhuǎn)化為元素間的關系,本題實質(zhì)求滿足屬于集合且不屬于集合的元素的集合.12、【解析】由對數(shù)真數(shù)大于0,偶次根式被開方式大于等于0,列出不等式組求解即可得答案.【詳解】解:由,得,所以函數(shù)的定義域為,故答案為:.13、【解析】由f(x+1)為奇函數(shù),f(x+2)為偶函數(shù),可得,,再結合已知的解析式可得,然后結合已知可求出,從而可得當時,,進而是結合前面的式子可求得答案【詳解】因為f(x+1)為奇函數(shù),所以的圖象關于點對稱,所以,且因為f(x+2)為偶函數(shù),所以的圖象關于直線對稱,,所以,即,所以,即,當x∈[1,2]時,f(x)=ax2+b,則,因為,所以,得,因為,所以,所以當時,,所以,故答案為:14、-7【解析】由已知是定義在上的奇函數(shù),當時,,所以,則=點睛:利用函數(shù)奇偶性求有關參數(shù)問題時,要靈活選用奇偶性的常用結論進行處理,可起到事半功倍的效果:①若奇函數(shù)在處有定義,則;②奇函數(shù)+奇函數(shù)=奇函數(shù),偶函數(shù)+偶函數(shù)=偶函數(shù),奇函數(shù)奇函數(shù)=偶函數(shù)偶函數(shù)=偶函數(shù);③特殊值驗證法15、3【解析】首先根據(jù)分段函數(shù)求的值,再求的值.【詳解】,所以.故答案為:3三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1),(2),【解析】(1)首先利用兩角和的正弦公式及輔助角公式將函數(shù)化簡,再代入求值即可;(2)由的取值范圍求出的范圍,再根據(jù)正弦函數(shù)的性質(zhì)計算可得;【小問1詳解】解:因為所以即,所以,【小問2詳解】解:由(1)可知,∵,∴,∴,∴,∴,令,即時取到最大值,,令,即時取到最小值.17、(1)當時,;當時,;(2);【解析】(1)根據(jù)題意分別代入求出,再比較的大小,利用函數(shù)的單調(diào)性即可求解.(2)先表示出的表達式,再根據(jù)函數(shù)的單調(diào)性求的值域.【詳解】解:(1)當時,在上單調(diào)遞減;,,又,,故;同理可得:當時,在上單調(diào)遞增;,,又,,故,綜上所述:當時,;當時,;(2)由題意可知:,,,故在上單調(diào)遞增;令,,當時,在上單調(diào)遞增;故在上單調(diào)遞減;故在上單調(diào)遞減;故,故的值域為:.18、(1)函數(shù)為奇函數(shù),證明見解析(2)是中心對稱圖形,對稱中心坐標為【解析】(1)根據(jù)奇函數(shù)的定義,即可證明結果;(2)根據(jù)題意,由函數(shù)的解析式可得,即可得結論【小問1詳解】解:函數(shù)為奇函數(shù)證明如下:函數(shù)的定義域為R,關于原點對稱又所以函數(shù)為奇函數(shù).【小問2詳解】解:函數(shù)的圖象是中心對稱圖形,其對稱中心為點解方程得,所以函數(shù)的定義域為明顯定義域僅關于點對稱所以若函數(shù)的圖象是中心對稱圖形,則其對稱中心橫坐標必為設其對稱中心為點,則由題意可知有,令,可得,所以所以若函數(shù)為中心對稱圖形,其對稱中心必定為點下面論證函數(shù)的圖象關于點成中心對稱圖形:即只需證明,,得證19、(1)0.42;(2)0.46.【解析】(1)由相互獨立事件概率的乘法公式運算即可得解;(2)由互斥事件概率的加法公式及相互獨立事件概率的乘法公式運算即可得解.【詳解】(1)事件“甲、乙二人都破譯密碼”可表示為AB,事件A,B相互獨立,由題意可知,所以;(2)事件“恰有一人破譯密碼”可表示為,且,互斥所以.20、(1)定義域為,奇函數(shù);(2)【解析】(1)只需解不等式組即可得出f(x)的定義域;求f(﹣x)即可得到f(﹣x)=﹣f(x),從而得出f(x)為奇函數(shù);(2)討論a:a>1,和0<a<1,根據(jù)f(x)的定義域及對數(shù)函數(shù)的單調(diào)性即可求得每種情況下原不等式的解詳解】解:(1)要使函數(shù)(且)有意義,則,解得故函數(shù)的定義域為,關于原點對稱,又,所以,為奇函數(shù)(2)由,即,當時,原不等式等價為,解得當,原不等式等價為,解得又因為的定義域為,所以,當時,使的x的取值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論