版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆江蘇省金陵中學(xué)高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.若命題“,使得”為真命題,則實數(shù)a的取值范圍是()A. B.C. D.2.設(shè)非零向量、、滿足,,則向量、的夾角()A. B.C. D.3.已知函數(shù)的圖象如圖所示,則函數(shù)與在同一直角坐標系中的圖象是A. B.C. D.4.17世紀,在研究天文學(xué)的過程中,為了簡化大數(shù)運算,蘇格蘭數(shù)學(xué)家納皮爾發(fā)明了對數(shù),對數(shù)的思想方法即把乘方和乘法運算分別轉(zhuǎn)化為乘法和加法,數(shù)學(xué)家拉普拉斯稱贊為“對數(shù)的發(fā)明在實效上等于把天文學(xué)家的壽命延長了許多倍”.已知,,設(shè),則所在的區(qū)間為()A. B.C. D.5.函數(shù)的圖象大致是A. B.C. D.6.向量,若,則k的值是()A.1 B.C.4 D.7.函數(shù)的零點個數(shù)為()A. B.C. D.8.“函數(shù)在區(qū)間I上嚴格單調(diào)”是“函數(shù)在I上有反函數(shù)”的()A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既非充分又非必要條件9.已知集合,則()A. B.C. D.10.已知向量,且,則實數(shù)=A B.0C.3 D.11.要得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位12.函數(shù)的定義域是A.(-1,2] B.[-1,2]C.(-1,2) D.[-1,2)二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.將函數(shù)的圖象上所有點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變,再將圖象向右平移個單位后,所得圖象關(guān)于原點對稱,則的值為______14.計算:___________.15.若不等式的解集為,則______,______16.命題“,使”是真命題,則的取值范圍是________三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.函數(shù)的一段圖象如下圖所示.(1)求函數(shù)的解析式;(2)將函數(shù)的圖象向右平移個單位,得到的圖象.求直線與函數(shù)的圖象在內(nèi)所有交點的橫坐標之和.18.已知正方體,分別為和上的點,且,.(1)求證:;(2)求證:三條直線交于一點.19.在①;②“”是“”的充分條件:③“”是“”的必要條件,在這三個條件中任選一個,補充到本題第(2)問的橫線處,求解下列問題問題:已知集合,(1)當時,求;(2)若________,求實數(shù)的取值范圍注:如果選擇多個條件分別解答,按第一個解答計分20.已知函數(shù)為冪函數(shù),且為奇函數(shù).(1)求的值,并確定的解析式;(2)令,求在的值域.21.設(shè)是定義在上的偶函數(shù),的圖象與的圖象關(guān)于直線對稱,且當時,()求的解析式()若在上為增函數(shù),求的取值范圍()是否存在正整數(shù),使的圖象的最高點落在直線上?若存在,求出的值;若不存在,請說明理由22.已知等差數(shù)列滿足,前項和.(1)求的通項公式(2)設(shè)等比數(shù)列滿足,,求的通項公式及的前項和.
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、B【解析】在上有解,利用基本不等式求出的最小值即可.【詳解】即在上有解,所以在上有解,由,當且僅當,即時取得等號,故故選:B2、B【解析】根據(jù)已知條件,應(yīng)用向量數(shù)量積的運算律可得,由得,即可求出向量、的夾角.【詳解】由題意,,即,∵,∴,則,又,∴.故選:B3、C【解析】根據(jù)冪函數(shù)的圖象和性質(zhì),可得a∈(0,1),再由指數(shù)函數(shù)和對數(shù)函數(shù)的圖象和性質(zhì),可得答案【詳解】由已知中函數(shù)y=xa(a∈R)的圖象可知:a∈(0,1),故函數(shù)y=a﹣x為增函數(shù)與y=logax為減函數(shù),故選C【點睛】本題考查知識點是冪函數(shù)的圖象和性質(zhì),指數(shù)函數(shù)和對數(shù)函數(shù)的圖象和性質(zhì),難度不大,屬于基礎(chǔ)題4、C【解析】利用對數(shù)的運算性質(zhì)求出,由此可得答案.【詳解】,所以.故選:C5、A【解析】利用函數(shù)的奇偶性排除選項B、C項,然后利用特殊值判斷,即可得到答案【詳解】由題意,函數(shù)滿足,所以函數(shù)為偶函數(shù),排除B、C,又因為時,,此時,所以排除D,故選A【點睛】本題主要考查了函數(shù)的圖象的識別問題,其中解答中熟練應(yīng)用函數(shù)的奇偶性進行排除,以及利用特殊值進行合理判斷是解答的關(guān)鍵,著重考查了分析問題解決問題的能力,屬于基礎(chǔ)題.6、B【解析】首先算出的坐標,然后根據(jù)建立方程求解即可.【詳解】因為所以,因為,所以,所以故選:B7、B【解析】當時,令,故,符合;當時,令,故,符合,所以的零點有2個,選B.8、A【解析】“函數(shù)在區(qū)間上單調(diào)”“函數(shù)在上有反函數(shù)”,反之不成立.即可判斷出結(jié)論【詳解】解:“函數(shù)在區(qū)間上嚴格單調(diào)”“函數(shù)在上有反函數(shù)”,下面給出證明:若“函數(shù)在區(qū)間上嚴格單調(diào)”,設(shè)函數(shù)在區(qū)間上的值域為,任取,如果在中存在兩個或多于兩個的值與之對應(yīng),設(shè)其中的某兩個為,且,即,但因為,所以(或)由函數(shù)在區(qū)間上單調(diào)知:,(或),這與矛盾.因此在中有唯一的值與之對應(yīng).由反函數(shù)的定義知:函數(shù)在區(qū)間上存在反函數(shù)反之“函數(shù)在上有反函數(shù)”則不一定有“函數(shù)在區(qū)間上單調(diào)”,例如:函數(shù),就存在反函數(shù):易知函數(shù)在區(qū)間上并不單調(diào)綜上,“函數(shù)在區(qū)間上嚴格單調(diào)”是“函數(shù)在上有反函數(shù)”的充分不必要條件.故選:A9、C【解析】根據(jù)并集的定義計算【詳解】由題意故選:C10、C【解析】由題意得,,因為,所以,解得,故選C.考點:向量的坐標運算.11、C【解析】化函數(shù)解析式為,再由圖象平移的概念可得【詳解】解要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個單位,即:故選C【點睛】本題考查函數(shù)圖象平移變換,要注意的左右平移變換只針對自變量加減,即函數(shù)的圖象向左平移個單位,得圖象的解析式為12、A【解析】根據(jù)二次根式的性質(zhì)求出函數(shù)的定義域即可【詳解】由題意得:解得:﹣1<x≤2,故函數(shù)的定義域是(﹣1,2],故選A【點睛】本題考查了求函數(shù)的定義域問題,考查二次根式的性質(zhì),是一道基礎(chǔ)題.常見的求定義域的類型有:對數(shù),要求真數(shù)大于0即可;偶次根式,要求被開方數(shù)大于等于0;分式,要求分母不等于0,零次冪,要求底數(shù)不為0;多項式要求每一部分的定義域取交集.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】將函數(shù)的圖象上所有點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變得到,再將圖象向右平移個單位,得到,即,其圖象關(guān)于原點對稱.∴,,又∴故答案為14、7【解析】直接利用對數(shù)的運算法則以及指數(shù)冪的運算法則化簡即可.【詳解】.故答案為:7.15、①.②.【解析】由題設(shè)知:是的根,應(yīng)用根與系數(shù)關(guān)系即可求參數(shù)值.【詳解】由題設(shè),是的根,∴,即,.故答案為:,.16、【解析】可根據(jù)題意得出“,恒成立”,然后根據(jù)即可得出結(jié)果.【詳解】因為命題“,使”是真命題,所以,恒成立,即恒成立,因為當時,,所以,的取值范圍是,故答案為:.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)(2)【解析】(1)由圖象可計算得;(2)由題意可求,進而可以求出在給定區(qū)間內(nèi)與已知直線的交點的橫坐標,問題得解.【小問1詳解】由題圖知,,于是,將的圖象向左平移個單位長度,得的圖象.于是所以,【小問2詳解】由題意得故由,得因為,所以所以或或或,所以,在給定區(qū)間內(nèi),所有交點的橫坐標之和為.18、(1)詳見解析;(2)詳見解析【解析】(1)連結(jié)和,由條件可證得和,從而得到∥.(2)結(jié)合題意可得直線和必相交,根據(jù)線面關(guān)系再證明該交點直線上即可得到結(jié)論【詳解】證明:(1)如圖,連結(jié)和,在正方體中,,∵,∴,又,,∴又在正方體中,,,∴,又,∴同理可得,又,∴∴∥.(2)由題意可得(或者和不平行),又由(1)知∥,所以直線和必相交,不妨設(shè),則,又,所以,同理因為,所以,所以、、三條直線交于一點【點睛】(1)證明兩直線平行時,可根據(jù)三種平行間的轉(zhuǎn)化關(guān)系進行證明,也可利用線面垂直的性質(zhì)進行證明,解題時要注意合理選擇方法進行求解(2)證明三線共點的方法是:先證明其中的兩條直線相交,再證明該交點在第三條直線上.解題時要依據(jù)空間中的線面關(guān)系及三個公理,并結(jié)合圖形進行求解19、(1)(2)【解析】(1)首先解一元二次不等式得到集合,再求出集合,最后根據(jù)交集的定義計算可得;(2)根據(jù)所選條件均可得到,即可得到不等式,解得即可;【小問1詳解】解:由,解得,所以,當時,,所以【小問2詳解】解:若選①,則,所以,解得,即;若選②“”是“”的充分條件,所以,所以,解得,即;若選③“”是“”的必要條件,所以,所以,解得,即;20、(1),;(2).【解析】(1)根據(jù)冪函數(shù)的定義及函數(shù)奇偶性的定義即可求解;(2)由(1),得,利用換元法得到,,再根據(jù)二次函數(shù)的性質(zhì)即可求解.【小問1詳解】因為函數(shù)為冪函數(shù),所以,解得或,當時,函數(shù)是奇函數(shù),符合題意,當時,函數(shù)是偶函數(shù),不符合題意,綜上所述,的值為,函數(shù)的解析式為.【小問2詳解】由(1)知,,所以,令,則,,所以,,根據(jù)二次函數(shù)的性質(zhì)知,的對稱軸為,開口向上,所以在上單調(diào)遞增;所以,所以函數(shù)在的值域為.21、(1);(2);(3)見解析.【解析】分析:()當時,,;當時,,從而可得結(jié)果;()由題設(shè)知,對恒成立,即對恒成立,于是,,從而;()因為為偶函數(shù),故只需研究函數(shù)在的最大值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,討論兩種情況,即可篩選出符合題意的正整數(shù).詳解:()當時,,;當時,,∴,()由題設(shè)知,對恒成立,即對恒成立,于是,,從而()因為為偶函數(shù),故只需研究函數(shù)在的最大值令,計算得出()若,即,,故此時不存在符合題意的()若,即,則在上為增函數(shù),于是令,故綜上,存在滿足題設(shè)點睛:本題主要考查利用導(dǎo)數(shù)研究函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度商業(yè)綜合體全面清掃及消毒合同4篇
- 二零二五年度櫥柜制造與安裝工程承攬合同4篇
- 體育賽事居間介紹合同范本
- 無人機飛行培訓(xùn)服務(wù)合同
- 工程項目施工承包合同
- 職業(yè)發(fā)型設(shè)計師剪發(fā)預(yù)約合同
- 酒店經(jīng)營管理授權(quán)經(jīng)營合同
- 跨境電商物流服務(wù)合同
- 環(huán)保工程風(fēng)險控制與免責(zé)合同
- 生物科技園區(qū)共享服務(wù)協(xié)議
- 衛(wèi)生服務(wù)個人基本信息表
- 醫(yī)學(xué)脂質(zhì)的構(gòu)成功能及分析專題課件
- 高技能人才培養(yǎng)的策略創(chuàng)新與實踐路徑
- 廣東省湛江市廉江市2023-2024學(xué)年八年級上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 2024年湖北省知名中小學(xué)教聯(lián)體聯(lián)盟中考語文一模試卷
- 安徽省蕪湖市2023-2024學(xué)年高一上學(xué)期期末考試 生物 含解析
- 交叉口同向可變車道動態(tài)控制與信號配時優(yōu)化研究
- 燃氣行業(yè)有限空間作業(yè)安全管理制度
- 數(shù)列練習(xí)題(含答案)基礎(chǔ)知識點
- 人教版(2024新版)七年級上冊英語期中+期末學(xué)業(yè)質(zhì)量測試卷 2套(含答案)
- 安華農(nóng)業(yè)保險股份有限公司北京市地方財政生豬價格指數(shù)保險條款(風(fēng)險敏感型)
評論
0/150
提交評論