




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年長春市第八十七中學(xué)高一數(shù)學(xué)第一學(xué)期期末達標檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12小題,共60分)1.已知函數(shù)是定義域為的奇函數(shù),且滿足,當時,,則A.4 B.2C.-2 D.-42.函數(shù)的零點所在區(qū)間為A. B.C. D.3.下列命題中,錯誤的是()A.平行于同一條直線的兩條直線平行B.已知直線垂直于平面內(nèi)的任意一條直線,則直線垂直于平面C.已知直線平面,直線,則直線D.已知為直線,、為平面,若且,則4.黃金分割比例廣泛存在于許多藝術(shù)作品中.在三角形中,底與腰之比為黃金分割比的三角形被稱作黃金三角形,被認為是最美的三角形,它是兩底角為72°的等腰三角形.達芬奇的名作《蒙娜麗莎》中,在整個畫面里形成了一個黃金三角形.如圖,在黃金三角形中,,根據(jù)這些信息,可得()A. B.C. D.5.設(shè)全集U=1,2,3,4,5,6,7,8,9,集合A=2,4,6,8,那么A.9 B.1,3,5,7,9C.1,3,5 D.2,4,66.已知函數(shù),,若恰有2個零點,則實數(shù)a的取值范圍是()A. B.C. D.7.用二分法求方程的近似解時,可以取的一個區(qū)間是A. B.C. D.8.如圖,在正四棱柱中,,點是平面內(nèi)的一個動點,則三棱錐的正視圖和俯視圖的面積之比的最大值為A B.C. D.9.數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線后人稱之為三角形的歐拉線.已知的頂點,若其歐拉線方程為,則頂點C的坐標是A. B.C. D.10.下列函數(shù)中,最小正周期為π2A.y=cosxC.y=cos2x11.()A.1 B.C. D.12.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,,已知函數(shù),則函數(shù)的值域是A. B.C. D.二、填空題(本大題共4小題,共20分)13.新高考選課走班“3+1+2”模式指的是:語文、數(shù)學(xué)、外語三門學(xué)科為必考科目,物理、歷史兩門科目必選一門,化學(xué)、生物、思想政治、地理四門科目選兩門.已知在一次選課過程中,甲、乙兩同學(xué)選擇科目之間沒有影響,在物理和歷史兩門科目中,甲同學(xué)選擇歷史的概率為,乙同學(xué)選擇物理的概率為,那么在物理和歷史兩門科目中甲、乙兩同學(xué)至少有1人選擇物理的概率為______14.不等式的解集是___________.15.兩條直線與互相垂直,則______16.已知定義域為R的偶函數(shù)滿足,當時,,則方程在區(qū)間上所有的解的和為___________.三、解答題(本大題共6小題,共70分)17.已知直線(1)求與垂直,且與兩坐標軸圍成的三角形面積為4直線方程:(2)已知圓心為,且與直線相切求圓的方程;18.已知函數(shù)(其中,)的圖象與軸的任意兩個相鄰交點間的距離為,且直線是函數(shù)圖象的一條對稱軸.(1)求的值;(2)求的單調(diào)遞減區(qū)間;(3)若,求的值域.19.已知如圖,在直三棱柱中,,且,是的中點,是的中點,點在直線上.(1)若為中點,求證:平面;(2)證明:20.已知函數(shù)是定義在上的增函數(shù),且.(1)求的值;(2)若,解不等式.21.若函數(shù)在定義域內(nèi)存在實數(shù)使成立,則稱函數(shù)有“漂移點”.(1)函數(shù)是否有漂移點?請說明理由;(2)證明函數(shù)在上有漂移點;(3)若函數(shù)在上有漂移點,求實數(shù)的取值范圍.22.某漁業(yè)公司年初用98萬元購進一艘漁船,用于捕撈.已知該船使用中所需的各種費用e(單位:萬元)與使用時間n(,單位:年)之間的函數(shù)關(guān)系式為,該船每年捕撈的總收入為50萬元(1)該漁船捕撈幾年開始盈利(即總收入減去成本及所有使用費用為正值)?(2)若當年平均盈利額達到最大值時,漁船以30萬元賣出,則該船為漁業(yè)公司帶來的收益是多少萬元?
參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】先利用周期性將轉(zhuǎn)化為,再利用奇函數(shù)的性質(zhì)將轉(zhuǎn)化成,然后利用時的函數(shù)表達式即可求值.【詳解】由可知,為周期函數(shù),周期為,所以,又因為為奇函數(shù),有,因為,所以,答案為B.【點睛】主要考查函數(shù)的周期性,奇偶性的應(yīng)用,屬于中檔題.2、C【解析】要判斷函數(shù)的零點位置,我們可以根據(jù)零點存在定理,依次判斷區(qū)間的兩個端點對應(yīng)的函數(shù)值,然后根據(jù)連續(xù)函數(shù)在區(qū)間上零點,則與異號進行判斷【詳解】,,故函數(shù)的零點必落在區(qū)間故選C【點睛】本題考查的知識點是函數(shù)的零點,解答的關(guān)鍵是零點存在定理:即連續(xù)函數(shù)在區(qū)間上與異號,則函數(shù)在區(qū)間上有零點3、C【解析】由平行線的傳遞性可判斷A;由線面垂直的定義可判斷B;由線面平行的定義可判斷C;由線面平行的性質(zhì)和線面垂直的性質(zhì),結(jié)合面面垂直的判定定理,可判斷D.【詳解】解:由平行線的傳遞性可得,平行于同一條直線的兩條直線平行,故A正確;由線面垂直的定義可得,若直線垂直于平面內(nèi)的任意一條直線,則直線垂直于平面,故B正確;由線面平行的定義可得,若直線平面,直線,則直線或,異面,故C錯誤;若,由線面平行的性質(zhì),可得過的平面與的交線與平行,又,可得,結(jié)合,可得,故D正確.故選:C.4、B【解析】由題意,結(jié)合二倍角余弦公式、平方關(guān)系求得,再根據(jù)誘導(dǎo)公式即可求.【詳解】由題設(shè),可得,,所以,又,所以.故選:B5、B【解析】由補集的定義分析可得?U【詳解】根據(jù)題意,全集U=1,2,3,4,5,6,7,8,9,而A=則?U故選:B6、B【解析】利用數(shù)形結(jié)合的方法,作出函數(shù)的圖象,簡單判斷即可.【詳解】依題意,函數(shù)的圖象與直線有兩個交點,作出函數(shù)圖象如下圖所示,由圖可知,要使函數(shù)的圖象與直線有兩個交點,則,即.故選:B.【點睛】本題考查函數(shù)零點問題,掌握三種等價形式:函數(shù)零點個數(shù)等價于方程根的個數(shù)等價于兩個函數(shù)圖象交點個數(shù),屬基礎(chǔ)題.7、A【解析】分析:根據(jù)零點存在定理進行判斷詳解:令,因為,,所以可以取的一個區(qū)間是,選A.點睛:零點存在定理的主要內(nèi)容為區(qū)間端點函數(shù)值異號,是判斷零點存在的主要依據(jù).8、B【解析】由題意可知,P在正視圖中的射影是在C1D1上,AB在正視圖中,在平面CDD1C1上的射影是CD,P的射影到CD的距離是AA1=2,所以三棱錐P﹣ABC的正視圖的面積為三棱錐P﹣ABC的俯視圖的面積的最小值為,所以三棱錐P﹣ABC的正視圖與俯視圖的面積之比的最大值為,故選B點睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.9、A【解析】設(shè)C的坐標,由重心坐標公式求重心,代入歐拉線得方程,求出AB的垂直平分線,聯(lián)立歐拉線方程得三角形外心,外心到三角形兩頂點距離相等可得另一方程,兩方程聯(lián)立求得C點的坐標.【詳解】設(shè)C(m,n),由重心坐標公式得重心為,代入歐拉線方程得:①AB的中點為,,所以AB的中垂線方程為聯(lián)立,解得所以三角形ABC的外心為,則,化簡得:②聯(lián)立①②得:或,當時,BC重合,舍去,所以頂點C的坐標是故選A.【點睛】本題主要考查了直線方程的各種形式,重心坐標公式,屬于中檔題.10、D【解析】利用三角函數(shù)的周期性求解.【詳解】A.y=cosx周期為T=2πB.y=tanx的周期為C.y=cos2x的周期為D.y=tan2x的周期為故選:D11、A【解析】直接利用誘導(dǎo)公式和兩角和的正弦公式求出結(jié)果【詳解】,故選:12、D【解析】化簡函數(shù),根據(jù)表示不超過的最大整數(shù),可得結(jié)果.【詳解】函數(shù),當時,;當時,;當時,,函數(shù)的值域是,故選D.【點睛】本題考查指數(shù)的運算、函數(shù)的值域以及新定義問題,屬于難題.新定義題型的特點是:通過給出一個新概念,或約定一種新運算,或給出幾個新模型來創(chuàng)設(shè)全新的問題情景,要求考生在閱讀理解的基礎(chǔ)上,依據(jù)題目提供的信息,聯(lián)系所學(xué)的知識和方法,實現(xiàn)信息的遷移,達到靈活解題的目的.遇到新定義問題,應(yīng)耐心讀題,分析新定義的特點,弄清新定義的性質(zhì),按新定義的要求,“照章辦事”,逐條分析、驗證、運算,使問題得以解決.二、填空題(本大題共4小題,共20分)13、【解析】至少1人選擇物理即為1人選擇物理或2人都選擇物理,由題分別得到甲選擇物理的概率與乙選擇歷史的概率,進而求解即可.【詳解】由題,設(shè)“在物理和歷史兩門科目中甲、乙兩同學(xué)至少有1人選擇物理”事件,則包括有1人選擇物理,或2人都選擇物理,因為甲同學(xué)選擇歷史的概率為,則甲同學(xué)選擇物理的概率為,因為乙同學(xué)選擇物理的概率為,則乙同學(xué)選擇歷史的概率為,故,故答案為:14、或【解析】把分式不等式轉(zhuǎn)化為,從而可解不等式.【詳解】因為,所以,解得或,所以不等式的解集是或.故答案為:或.15、【解析】先分別求出兩條直線的斜率,再利用兩條直線垂直的充要條件是斜率乘積等于,即可求出結(jié)果【詳解】直線的斜率,直線的斜率,且兩直線與互相垂直,,,解得,故答案為【點睛】本題主要考查兩直線垂直的充要條件,屬于基礎(chǔ)題.在兩條直線的斜率都存在的條件下,兩條直線垂直的充要條件是斜率乘積等于16、【解析】根據(jù)給定條件,分析函數(shù),函數(shù)的性質(zhì),再在同一坐標系內(nèi)作出兩個函數(shù)圖象,結(jié)合圖象計算作答.【詳解】當時,,則函數(shù)在上單調(diào)遞減,函數(shù)值從減到0,而是R上的偶函數(shù),則函數(shù)在上單調(diào)遞增,函數(shù)值從0增到,因,有,則函數(shù)的周期是2,且有,即圖象關(guān)于直線對稱,令,則函數(shù)在上遞增,在上遞減,值域為,且圖象關(guān)于直線對稱,在同一坐標系內(nèi)作出函數(shù)和的圖象,如圖,觀察圖象得,函數(shù)和在上的圖象有8個交點,且兩兩關(guān)于直線對稱,所以方程在區(qū)間上所有解的和為.故答案為:【點睛】方法點睛:函數(shù)零點個數(shù)判斷方法:(1)直接法:直接求出f(x)=0的解;(2)圖象法:作出函數(shù)f(x)的圖象,觀察與x軸公共點個數(shù)或者將函數(shù)變形為易于作圖的兩個函數(shù),作出這兩個函數(shù)的圖象,觀察它們的公共點個數(shù).三、解答題(本大題共6小題,共70分)17、(1)或;(2)【解析】分析:(1)由題意,設(shè)所求的直線方程為,分離令和,求得在坐標軸上的截距,利用三角形的面積公式,求得的值,即可求解;(2)設(shè)圓的半徑為,因為圓與直線相切,列出方程,求得半徑,即可得到圓的標準方程.詳解:(1)∵所求的直線與直線垂直,∴設(shè)所求的直線方程為,∵令,得;令,得.∵所求的直線與兩坐標軸圍成的三角形面積為4∴,∴∴所求的直線方程為或(2)設(shè)圓的半徑為,∵圓與直線相切∴∴所求的圓的方程為點睛:本題主要考查了直線方程的求解,以及直線與圓的位置關(guān)系的應(yīng)用,著重考查了推理與計算能力,屬于基礎(chǔ)題.18、(1)2(2)(3)【解析】小問1:先求解函數(shù)周期再求得參數(shù)的值;小問2:根據(jù)對稱軸求出的值,結(jié)合正弦函數(shù)單調(diào)減區(qū)間定義即可求解;小問3:因為,所以,結(jié)合正弦函數(shù)的值域即可求出結(jié)果【小問1詳解】因為函數(shù)的圖象與軸的任意兩個相鄰交點間的距離為,所以函數(shù)的周期,所以【小問2詳解】因為直線是函數(shù)圖象的一條對稱軸,所以,.又,所以所以函數(shù)的解析式是令,解得所以函數(shù)的單調(diào)遞減區(qū)間為【小問3詳解】因為,所以.所以,即函數(shù)的值域為19、(1)見解析;(2)見解析【解析】(1)取中點為,連接,,首先說明四邊形是平行四邊形,即可得,根據(jù)線面平行判定定理即可得結(jié)果;(2)連接,利用得到,再通過平面得到,進而平面,即可得最后結(jié)果.【詳解】(1)證明:取中點為,連接,,在中,,又所以,,即四邊形是平行四邊形.故,又平面,平面,所以,平面.(2)證明:連接,在正方形中,,所以,與互余,故,又,,,所以,平面,又平面,故又,所以平面又平面,所以【點睛】本題主要考查了線面平行的判定,通過線線垂直線面垂直線面垂直的過程,屬于中檔題.在證明線面平行中,常見的方法有以下幾種:1、利用三角形中位線;2、構(gòu)造平行四邊形得到線線平行;3、構(gòu)造面面平行等.20、(1)0(2)【解析】(1)直接利用賦值法,令即可得結(jié)果;(2)利用已知條件將不等式化為,結(jié)合單調(diào)性可得結(jié)果.【小問1詳解】令則有.【小問2詳解】∵∴,則可化為,即則,∵在上單調(diào)遞增∴,解得.即不等式的解集為.21、(1)沒有,理由見解析;(2)證明見解析;(3).【解析】(1)根據(jù)給定定義列方程求解判斷作答.(2)根據(jù)給定定義構(gòu)造函數(shù),由零點存在性定理判斷函數(shù)的零點情況即可作答.(3)根據(jù)給定定義列方程,變形構(gòu)造函數(shù),利用函數(shù)有零點分類討論計算作答.【小問1詳解】假設(shè)函數(shù)有“漂移點”,則,此方程無實根,所以函數(shù)沒有漂移點.【小問2詳解】令,,則,有,即有,而函數(shù)在單調(diào)遞增,因此,在上有一個實根,所以函數(shù)在上有漂移點.小問3詳解】依題意,設(shè)在上的漂移點為,則,即,亦即,整理得:,由已知可得,令,,則在上有零點,當時,的圖象的對稱軸為,而,則,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 16 《大家排好隊》(教學(xué)設(shè)計)2024-2025學(xué)年統(tǒng)編版(2024)小學(xué)道德與法治一年級上冊
- 云南科技信息職業(yè)學(xué)院《文學(xué)作品與影視改編》2023-2024學(xué)年第二學(xué)期期末試卷
- 臨沂職業(yè)學(xué)院《交通大數(shù)據(jù)分析與處理》2023-2024學(xué)年第二學(xué)期期末試卷
- 河南2025年河南省委黨校省直分校招聘博士研究生2人筆試歷年參考題庫附帶答案詳解
- 遼寧裝備制造職業(yè)技術(shù)學(xué)院《水質(zhì)監(jiān)測與實驗》2023-2024學(xué)年第二學(xué)期期末試卷
- 洛陽師范學(xué)院《運動技能學(xué)習與控制》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年度文化活動場地租賃合同規(guī)范文本
- 監(jiān)理機構(gòu)職責
- 小數(shù)的意義二(教學(xué)設(shè)計)-2023-2024學(xué)年四年級下冊數(shù)學(xué)北師大版
- 2025年度文化產(chǎn)業(yè)反擔保保證合同及文化產(chǎn)業(yè)發(fā)展規(guī)劃
- 《電力建設(shè)工程施工安全管理導(dǎo)則》(NB∕T 10096-2018)
- 2024-2025學(xué)年廣東省部分學(xué)校高一(上)第一次聯(lián)合考試物理試卷(含答案)
- 《黃色新聞的泛濫》課件
- 2024年山東省公務(wù)員考試《行測》真題及答案解析
- 化工原理Ⅱ?qū)W習通超星期末考試答案章節(jié)答案2024年
- 2024-2025學(xué)年初中體育與健康九年級全一冊人教版(2024)教學(xué)設(shè)計合集
- 環(huán)保產(chǎn)業(yè)政策及市場發(fā)展趨勢分析研究
- 2024年河南省高考對口升學(xué)語文英語試題
- 學(xué)習白求恩精神,做一個高尚的人一個純潔的人
- 《中醫(yī)藥學(xué)概論》期末考試復(fù)習題庫(含答案)
- 2024年秋季新外研版三年級上冊英語課件 Unit 1 第1課時(Get ready)
評論
0/150
提交評論