版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題15數(shù)列的概念與表示【考綱要求】1、了解數(shù)列的概念和幾種簡單的表示方法(列表法、圖象法、通項(xiàng)公式法).2、了解數(shù)列是自變量為正整數(shù)的一類特殊函數(shù).【思維導(dǎo)圖】【考點(diǎn)總結(jié)】1.?dāng)?shù)列的定義、分類與通項(xiàng)公式(1)數(shù)列的定義①數(shù)列:按照一定順序排列的一列數(shù);②數(shù)列的項(xiàng):數(shù)列中的每一個(gè)數(shù).(2)數(shù)列的分類分類標(biāo)準(zhǔn)類型滿足條件項(xiàng)數(shù)有窮數(shù)列項(xiàng)數(shù)有限無窮數(shù)列項(xiàng)數(shù)無限項(xiàng)與項(xiàng)間的大小關(guān)系遞增數(shù)列an+1>an其中,n∈N*遞減數(shù)列an+1<an常數(shù)列an+1=an(3)數(shù)列的通項(xiàng)公式如果數(shù)列{an}的第n項(xiàng)與序號(hào)n之間的關(guān)系可以用一個(gè)公式來表示,那么這個(gè)公式叫做這個(gè)數(shù)列的通項(xiàng)公式.2.?dāng)?shù)列的遞推公式如果已知數(shù)列{an}的首項(xiàng)(或前幾項(xiàng)),且任一項(xiàng)an與它的前一項(xiàng)an-1(n≥2)(或前幾項(xiàng))間的關(guān)系可用一個(gè)公式來表示,那么這個(gè)公式叫做數(shù)列的遞推公式.【題型匯編】題型一:數(shù)列的概念題型二:遞增數(shù)列與遞減數(shù)列題型三:數(shù)列的通項(xiàng)公式題型四:數(shù)列的遞推【題型講解】題型一:數(shù)列的概念一、單選題1.(2022·寧夏·銀川一中一模(文))意大利數(shù)學(xué)家斐波那契的《算經(jīng)》中記載了一個(gè)有趣的問題:已知-對(duì)兔子每個(gè)月可以生一對(duì)兔子,而一對(duì)兔子出生后在第二個(gè)月就開始生小兔子.假如沒有發(fā)生死亡現(xiàn)象,那么兔子對(duì)數(shù)依次為:1,1,2,3,5,8,13,21,34,55,89,144,...,這就是著名的斐波那契數(shù)列,它的遞推公式是SKIPIF1<0,其中,SKIPIF1<0若從該數(shù)列的前120項(xiàng)中隨機(jī)地抽取一個(gè)數(shù),則這個(gè)數(shù)是偶數(shù)的概率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】根據(jù)已知條件先分析數(shù)列中相鄰三項(xiàng)的奇偶性情況,然后得到前SKIPIF1<0項(xiàng)中的偶數(shù)個(gè)數(shù),由此可求解出對(duì)應(yīng)概率.【詳解】因?yàn)槠鏀?shù)加奇數(shù)結(jié)果是偶數(shù),奇數(shù)加偶數(shù)結(jié)果是奇數(shù),偶數(shù)加奇數(shù)結(jié)果是奇數(shù),所以數(shù)列中任意相鄰的三項(xiàng),其中一項(xiàng)為偶數(shù),兩項(xiàng)為奇數(shù),所以前SKIPIF1<0項(xiàng)中偶數(shù)有SKIPIF1<0項(xiàng),所以這個(gè)數(shù)是偶數(shù)的概率為SKIPIF1<0.故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:解答本題的關(guān)鍵在于分析斐波那契數(shù)列中項(xiàng)的奇偶組成,通過項(xiàng)的奇偶組成確定出SKIPIF1<0項(xiàng)中奇數(shù)和偶數(shù)的項(xiàng)數(shù),完成問題的求解.2.(2022·浙江·高三專題練習(xí))已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0前100項(xiàng)的和為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】先分別求出SKIPIF1<0的前9項(xiàng),觀察這9項(xiàng)知SKIPIF1<0是周期為6的周期函數(shù),由此能求出SKIPIF1<0前100項(xiàng)之和.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是周期為6的周期函數(shù),SKIPIF1<0,SKIPIF1<0﹒故選:C﹒3.(2022·全國·高三專題練習(xí))已知數(shù)列SKIPIF1<0,滿足SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.2 C.1 D.SKIPIF1<0【答案】A【解析】利用遞推公式計(jì)算出數(shù)列SKIPIF1<0的前幾項(xiàng),找出數(shù)列SKIPIF1<0的周期,然后利用周期性求出SKIPIF1<0的值.【詳解】由SKIPIF1<0,且SKIPIF1<0則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,即數(shù)列SKIPIF1<0是以3為周期的周期數(shù)列所以SKIPIF1<0故選:A題型二:遞增數(shù)列與遞減數(shù)列一、單選題1.(2022·四川達(dá)州·二模(理))已知單調(diào)遞增數(shù)列SKIPIF1<0滿足SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】根據(jù)數(shù)列的單調(diào)性可知每一段上單調(diào)遞增且SKIPIF1<0,由此可構(gòu)造不等式求得結(jié)果.【詳解】SKIPIF1<0為單調(diào)遞增數(shù)列,SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選:B.2.(2022·上海崇明·二模)已知無窮等比數(shù)列SKIPIF1<0中SKIPIF1<0,SKIPIF1<0,它的前n項(xiàng)和為SKIPIF1<0,則下列命題正確的是(
)A.?dāng)?shù)列SKIPIF1<0是遞增數(shù)列 B.?dāng)?shù)列SKIPIF1<0是遞減數(shù)列C.?dāng)?shù)列SKIPIF1<0存在最小項(xiàng) D.?dāng)?shù)列SKIPIF1<0存在最大項(xiàng)【答案】C【解析】【分析】對(duì)AB,舉公比為負(fù)數(shù)的反例判斷即可對(duì)CD,設(shè)等比數(shù)列SKIPIF1<0公比為SKIPIF1<0,分SKIPIF1<0和SKIPIF1<0兩種情況討論,再得出結(jié)論即可【詳解】對(duì)AB,當(dāng)公比為SKIPIF1<0時(shí),SKIPIF1<0此時(shí)SKIPIF1<0,此時(shí)SKIPIF1<0既不是遞增也不是遞減數(shù)列;對(duì)CD,設(shè)等比數(shù)列SKIPIF1<0公比為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),因?yàn)镾KIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,此時(shí)SKIPIF1<0,易得SKIPIF1<0隨SKIPIF1<0的增大而增大,故SKIPIF1<0存在最小項(xiàng)SKIPIF1<0,不存在最大項(xiàng);當(dāng)SKIPIF1<0時(shí),因?yàn)镾KIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,故當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0,隨著SKIPIF1<0的增大而增大,此時(shí)SKIPIF1<0無最大值,當(dāng)SKIPIF1<0時(shí)有最小值SKIPIF1<0;當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0,隨著SKIPIF1<0的增大而減小,故SKIPIF1<0無最小值,有最大值SKIPIF1<0.綜上,當(dāng)SKIPIF1<0時(shí),因?yàn)镾KIPIF1<0,故當(dāng)SKIPIF1<0時(shí)有最小值SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)有最大值SKIPIF1<0綜上所述,數(shù)列SKIPIF1<0存在最小項(xiàng),不一定有最大項(xiàng),故C正確;D錯(cuò)誤故選:C3.(2022·廣東廣州·三模)等比數(shù)列SKIPIF1<0中,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】D【解析】【分析】根據(jù)等差中項(xiàng)的知識(shí)列方程,求得SKIPIF1<0,結(jié)合數(shù)列的單調(diào)性求得SKIPIF1<0的最小值.【詳解】設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,由于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,所以SKIPIF1<0,即SKIPIF1<0,也即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:D4.(2022·山西·一模(理))“三分損益法”是古代中國制定音律時(shí)所用的生律法.三分損益包含“三分損一”“三分益一”.取一段弦,“三分損一”即均分弦為三段,舍一留二,便得到SKIPIF1<0弦.“三分益一”即弦均分三段后再加一段,便得到SKIPIF1<0弦.以宮為第一個(gè)音,依次按照損益的順序,得到四個(gè)音,這五個(gè)音的音高從低到高依次是宮、商、角、微、羽,合稱“五音”.已知聲音的音高與弦長是成反比的,那么所得四音生成的順序是(
)A.微、商、羽、角 B.微、羽、商、角C.商、角、微、羽 D.角、羽、商、徵【答案】A【解析】【分析】設(shè)宮的弦長為SKIPIF1<0,根據(jù)生律法按順序?qū)懗龊罄m(xù)四音的弦長,再由題設(shè)音高與弦長的反比關(guān)系判斷五音生成順序,即可得答案.【詳解】由題設(shè),若宮的弦長為SKIPIF1<0,則其它四音對(duì)應(yīng)弦長依次為SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,因?yàn)槁曇舻囊舾吲c弦長是成反比,則四音的音高關(guān)系為SKIPIF1<0,又音高從低到高依次是宮、商、角、微、羽,所以五音生成順序?yàn)閷m、微、商、羽、角.故選:A5.(2022·山東泰安·一模)已知數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為1的等差數(shù)列,數(shù)列SKIPIF1<0滿足SKIPIF1<0.若對(duì)任意的SKIPIF1<0,都有SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】由等差數(shù)列通項(xiàng)公式得SKIPIF1<0,再結(jié)合題意得數(shù)列SKIPIF1<0單調(diào)遞增,且滿足SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,再解不等式即可得答案.【詳解】解:根據(jù)題意:數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為1的等差數(shù)列,所以SKIPIF1<0,由于數(shù)列SKIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0對(duì)任意的SKIPIF1<0都成立,故數(shù)列SKIPIF1<0單調(diào)遞增,且滿足SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:SKIPIF1<0.6.(2022·湖南·雅禮中學(xué)二模)已知數(shù)列{SKIPIF1<0}滿足SKIPIF1<0則SKIPIF1<0∈(
)A.(SKIPIF1<0,SKIPIF1<0) B.(SKIPIF1<0,SKIPIF1<0) C.(SKIPIF1<0,SKIPIF1<0) D.(SKIPIF1<0,SKIPIF1<0)【答案】C【解析】【分析】由SKIPIF1<0,可知數(shù)列SKIPIF1<0的單調(diào)性,然后兩邊三次方后放縮,,可得SKIPIF1<0,累加可得SKIPIF1<0,再利用上述三次方的式子結(jié)合單調(diào)性放縮,可得SKIPIF1<0,即可得解.【詳解】由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以數(shù)列SKIPIF1<0時(shí)遞增數(shù)列且SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0.故選:C.二、多選題1.(2022·湖南永州·三模)已知等差數(shù)列SKIPIF1<0是遞減數(shù)列,SKIPIF1<0為其前SKIPIF1<0項(xiàng)和,且SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0、SKIPIF1<0均為SKIPIF1<0的最大值【答案】BD【解析】【分析】根據(jù)等差數(shù)列的性質(zhì)以及其前SKIPIF1<0項(xiàng)和的性質(zhì),逐個(gè)選項(xiàng)進(jìn)行判斷即可求解【詳解】因?yàn)榈炔顢?shù)列SKIPIF1<0是遞減數(shù)列,所以,SKIPIF1<0,所以,SKIPIF1<0,故A錯(cuò)誤;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故B正確;因?yàn)镾KIPIF1<0,故C錯(cuò)誤;因?yàn)橛深}意得,SKIPIF1<0,所以,SKIPIF1<0,故D正確;故選:BD2.(2022·湖南·一模)數(shù)列SKIPIF1<0滿足,SKIPIF1<0,則(
)A.?dāng)?shù)列SKIPIF1<0可能為常數(shù)列 B.當(dāng)SKIPIF1<0時(shí),數(shù)列SKIPIF1<0前10項(xiàng)之和為SKIPIF1<0C.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為SKIPIF1<0 D.若數(shù)列SKIPIF1<0為遞增數(shù)列,則SKIPIF1<0【答案】ABD【解析】【分析】利用構(gòu)造數(shù)列法可得數(shù)列SKIPIF1<0為等差數(shù)列,寫出通項(xiàng)公式,從而判斷每個(gè)選項(xiàng).【詳解】A.由SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,為常數(shù)列;B.SKIPIF1<0,故SKIPIF1<0為等差數(shù)列,SKIPIF1<0時(shí),SKIPIF1<0的前10項(xiàng)和為SKIPIF1<0;C.由B知,SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0,數(shù)列SKIPIF1<0的最小值為SKIPIF1<0;D.SKIPIF1<0,故SKIPIF1<0,當(dāng)SKIPIF1<0遞增時(shí),有SKIPIF1<0.故選:ABD【點(diǎn)睛】求解本題的關(guān)鍵是通過構(gòu)造數(shù)列法,證明得數(shù)列SKIPIF1<0為等差數(shù)列,從而寫出通項(xiàng)公式,再判斷每個(gè)選項(xiàng).題型三:數(shù)列的通項(xiàng)公式一、單選題1.(2022·云南曲靖·二模(文))設(shè)SKIPIF1<0是數(shù)列SKIPIF1<0的前n項(xiàng)和,若SKIPIF1<0,則SKIPIF1<0(
)A.4045 B.4043 C.4041 D.2021【答案】A【解析】【分析】根據(jù)SKIPIF1<0計(jì)算可得;【詳解】解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0;故選:A2.(2022·內(nèi)蒙古赤峰·三模(文))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】根據(jù)SKIPIF1<0,求出SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,即可得解;【詳解】解:因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0;故選:D3.(2022·青海·大通回族土族自治縣教學(xué)研究室二模(文))數(shù)列SKIPIF1<0滿足SKIPIF1<0SKIPIF1<0,則SKIPIF1<0(
)A.64 B.128 C.256 D.512【答案】A【解析】【分析】SKIPIF1<0SKIPIF1<0即數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,根據(jù)SKIPIF1<0代入計(jì)算.【詳解】當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0SKIPIF1<0,①得SKIPIF1<0SKIPIF1<0,②①-②,得SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0.故選:A.4.(2022·陜西·安康市高新中學(xué)三模(文))已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.129 B.132 C.381 D.384【答案】C【解析】【分析】根據(jù)SKIPIF1<0與SKIPIF1<0的關(guān)系可證得數(shù)列SKIPIF1<0是等比數(shù)列,再根據(jù)等比數(shù)列的前SKIPIF1<0項(xiàng)和公式即可得出答案.【詳解】解:當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,得SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,得SKIPIF1<0,所以數(shù)列SKIPIF1<0是以3為首項(xiàng),2為公比的等比數(shù)列,故SKIPIF1<0,所以SKIPIF1<0.故選:C.5.(2022·四川宜賓·二模(文))設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】根據(jù)題目所給遞推關(guān)系,利用SKIPIF1<0,求得SKIPIF1<0為等比數(shù)列,首項(xiàng)為3公比為2,即可得解.【詳解】由SKIPIF1<0①,當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0②,作差可得:SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為等比數(shù)列,首項(xiàng)為3公比為2,所以SKIPIF1<0.故選:C6.(2022·黑龍江·一模(理))已知數(shù)列SKIPIF1<0滿足對(duì)任意的正整數(shù)n,都有SKIPIF1<0,其中SKIPIF1<0,則數(shù)列SKIPIF1<0的前2022項(xiàng)和是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】根據(jù)已知條件,利用SKIPIF1<0的關(guān)系,求得數(shù)列類型,再利用等比數(shù)列的前SKIPIF1<0項(xiàng)和公式即可求得結(jié)果.【詳解】不妨設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,故由題可得SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故該數(shù)列是SKIPIF1<0,且從第二項(xiàng)起是公比為SKIPIF1<0的等比數(shù)列.故SKIPIF1<0.故選:C.7.(2022·青海西寧·二模(理))已知SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.2020 B.2021 C.2022 D.2024【答案】C【解析】【分析】利用SKIPIF1<0化簡可得出SKIPIF1<0,則可求出答案.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得SKIPIF1<0,兩式相減可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0.故選:C.8.(2022·北京東城·三模)已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0中的項(xiàng)不可能為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】根據(jù)題意SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,再分別討論SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時(shí)對(duì)應(yīng)的情況,進(jìn)而求解即可.【詳解】解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以,當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,此時(shí)SKIPIF1<0或SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,此時(shí)SKIPIF1<0或SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,此時(shí)SKIPIF1<0或SKIPIF1<0;故SKIPIF1<0中的項(xiàng)不可能為SKIPIF1<0.故選:D二、多選題1.(2022·重慶·二模)設(shè)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,已知SKIPIF1<0,且SKIPIF1<0SKIPIF1<0,則下列結(jié)論正確的是(
)A.SKIPIF1<0是等比數(shù)列 B.SKIPIF1<0是等比數(shù)列C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【解析】【分析】由條件變形,先求SKIPIF1<0的通項(xiàng)公式,再判斷選項(xiàng)【詳解】由題意得SKIPIF1<0,故SKIPIF1<0是首項(xiàng)為2,公比為2的等比數(shù)列,SKIPIF1<0,則SKIPIF1<0.故B,C正確,A錯(cuò)誤SKIPIF1<0,SKIPIF1<0,兩式相減得:SKIPIF1<0,故D錯(cuò)誤.故選:BC2.(2022·江蘇江蘇·三模)已知各項(xiàng)都是正數(shù)的數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0是等差數(shù)列 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【解析】【分析】對(duì)于A,求出SKIPIF1<0,再將SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,即可證明,對(duì)于B,利用A的結(jié)論求出SKIPIF1<0,再利用基本不等式,即可證明.對(duì)于C,求出SKIPIF1<0,即可判斷正誤,對(duì)于D,構(gòu)造函數(shù)SKIPIF1<0,即可判斷正誤【詳解】SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0SKIPIF1<0時(shí),SKIPIF1<0,整理得:SKIPIF1<0故SKIPIF1<0是等差數(shù)列,選項(xiàng)A正確;SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,選項(xiàng)B正確;SKIPIF1<0,選項(xiàng)C錯(cuò)誤;令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0在SKIPIF1<0遞增,SKIPIF1<0,則SKIPIF1<0即SKIPIF1<0,選項(xiàng)D正確;故選:ABD.題型四:數(shù)列的遞推一、單選題1.(2022·陜西·西安中學(xué)一模(文))斐波那契數(shù)列又稱黃金分割數(shù)列,也叫“兔子數(shù)列”,在數(shù)學(xué)上,斐波那契數(shù)列被以下遞推方法定義:數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,先從該數(shù)列前12項(xiàng)中隨機(jī)抽取1項(xiàng),是質(zhì)數(shù)的概率是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】根據(jù)遞推公式寫出前12項(xiàng),找出質(zhì)數(shù)的個(gè)數(shù),利用古典概型求概率公式進(jìn)行求解.【詳解】由斐波那契數(shù)列的遞推關(guān)系可知,前12項(xiàng)分別為:1,1,2,3,5,8,13,21,34,55,89,144,所以基本事件數(shù)共有12,其中質(zhì)數(shù)有2,3,5,13,89,共5種,故是質(zhì)數(shù)的概率為SKIPIF1<0.故選:A.2.(2022·江西南昌·一模(文))數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.8 B.16 C.12 D.24【答案】B【解析】【分析】先令SKIPIF1<0,求出SKIPIF1<0,再令SKIPIF1<0,可求出SKIPIF1<0【詳解】因?yàn)閿?shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,所以令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,故選:B3.(2022·河南·襄城縣教育體育局教學(xué)研究室二模(文))設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】根據(jù)SKIPIF1<0,SKIPIF1<0,分別求出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的值即可.【詳解】∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,故選:SKIPIF1<0.4.(2022·山東濟(jì)南·二模)在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0等于(
)A.0 B.-1 C.-2 D.-3【答案】D【解析】【分析】依次求得SKIPIF1<0的值.【詳解】SKIPIF1<0,SKIPIF1<0.故選:D5.(2022·北京·北大附中三模)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,其中SKIPIF1<0,則數(shù)列SKIPIF1<0(
)A.有最大項(xiàng),有最小項(xiàng) B.有最大項(xiàng),無最小項(xiàng)C.無最大項(xiàng),有最小項(xiàng) D.無最大項(xiàng),無最小項(xiàng)【答案】A【解析】【分析】求得數(shù)列SKIPIF1<0的通項(xiàng)公式,再分析數(shù)列的單調(diào)性即可【詳解】依題意,因?yàn)镾KIPIF1<0,其中SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,兩式相除有SKIPIF1<0,易得SKIPIF1<0隨著SKIPIF1<0的增大而減小,故SKIPIF1<0,且SKIPIF1<0,故最小項(xiàng)為SKIPIF1<0,最大項(xiàng)為SKIPIF1<0故選:A6.(2022·重慶·三模)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則數(shù)列SKIPIF1<0第2022項(xiàng)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】由題中條件可得到偶數(shù)項(xiàng)得關(guān)系SKIPIF1<0,再進(jìn)行累加即得.【詳解】SKIPIF1<0所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0累加得SKIPIF1<0故選:C.7.(2022·安徽蚌埠·三模(理))若數(shù)列SKIPIF1<0滿足:SKIPIF1<0,且SKIPIF1<0.則SKIPIF1<0(
)A.19 B.22 C.43 D.46【答案】C【解析】【分析】直接由遞推關(guān)系式求解即可.【詳解】由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:C.8.(2022·安徽蚌埠·三模(文))若數(shù)列SKIPIF1<0滿足:SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.7 B.10 C.19 D.22【答案】C【解析】【分析】根據(jù)遞推公式一一計(jì)算可得;【詳解】解:因?yàn)镾KIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;故選:C9.(2022·黑龍江·哈九中二模(理))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.若SKIPIF1<0,則正整數(shù)SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【詳解】由SKIPIF1<0知,數(shù)列是等差數(shù)列,首項(xiàng)是SKIPIF1<0,公差是SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0可化為SKIPIF1<0,解得SKIPIF1<0,故選C.10.(2022·上海虹口·二模)在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.對(duì)于命題:①存在SKIPIF1<0,對(duì)于任意的正整數(shù)SKIPIF1<0,都有SKIPIF1<0.②對(duì)于任意SKIPIF1<0和任意的正整數(shù)SKIPIF1<0,都有SKIPIF1<0.下列判斷正確的是(
)A.①是真命題,②也是真命題 B.①是真命題,②是假命題C.①是假命題,②是真命題 D.①是假命題,②也是假命題【答案】A【解析】【分析】對(duì)①,直接令SKIPIF1<0判斷即可;對(duì)②,利用反證法,先設(shè)數(shù)列中第一項(xiàng)滿足SKIPIF1<0的項(xiàng)為SKIPIF1<0,再推導(dǎo)SKIPIF1<0的大小推出矛盾即可;【詳解】對(duì)①,當(dāng)SKIPIF1<0時(shí),易得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0…故數(shù)列SKIPIF1<0為2,2,1循環(huán).所以對(duì)于任意的正整數(shù)SKIPIF1<0,都有SKIPIF1<0成立,故①正確;對(duì)②,對(duì)于任意SKIPIF1<0,有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)數(shù)列中第一項(xiàng)滿足SKIPIF1<0的項(xiàng)為SKIPIF1<0,則SKIPIF1<0,此時(shí)易得SKIPIF1<0,又SKIPIF1<0,且由題意,SKIPIF1<0恒成立,故SKIPIF1<0,即數(shù)列SKIPIF1<0中所有項(xiàng)都滿足SKIPIF1<0,故SKIPIF1<0,因?yàn)镾KIPIF1<0,與SKIPIF1<0矛盾,故對(duì)于任意SKIPIF1<0和任意的正整數(shù)SKIPIF1<0,都有SKIPIF1<0.故選:A11.(2022·重慶·三模)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】當(dāng)SKIPIF1<0為奇數(shù)時(shí)有SKIPIF1<0,函數(shù)SKIPIF1<0的周期為SKIPIF1<0可得SKIPIF1<0,計(jì)算出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0可得答案.【詳解】當(dāng)SKIPIF1<0為奇數(shù)時(shí)有SKIPIF1<0,函數(shù)SKIPIF1<0的周期為SKIPIF1<0,故有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,按此規(guī)律下去循環(huán)重復(fù)下去,SKIPIF1<0,故有SKIPIF1<0.故選:C.二、多選題1.(2022·湖南·雅禮中學(xué)二模)著名的“河內(nèi)塔”問題中,地面直立著三根柱子,在1號(hào)柱上從上至下?從小到大套著n個(gè)中心帶孔的圓盤.將一個(gè)柱子最上方的一個(gè)圓盤移動(dòng)到另一個(gè)柱子,且保持每個(gè)柱子上較大的圓盤總在較小的圓盤下面,視為一次操作.設(shè)將n個(gè)圓盤全部從1號(hào)柱子移動(dòng)到3號(hào)柱子的最少操作數(shù)為SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【解析】【分析】由題可得SKIPIF1<0,進(jìn)而可得SKIPIF1<0是以2為首項(xiàng),2為公比的等比數(shù)列,可得SKIPIF1<0,即得.【詳解】將圓盤從小到大編為SKIPIF1<0號(hào)圓盤,則將第SKIPIF1<0號(hào)圓盤移動(dòng)到3號(hào)柱時(shí),需先將第SKIPIF1<0號(hào)圓盤移動(dòng)到2號(hào)柱,需SKIPIF1<0次操作;將第SKIPIF1<0號(hào)圓盤移動(dòng)到3號(hào)柱需1次操作;再將SKIPIF1<0號(hào)圓需移動(dòng)到3號(hào)柱需SKIPIF1<0次操作,故SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工現(xiàn)場(chǎng)施工防臺(tái)風(fēng)災(zāi)害制度
- 施工現(xiàn)場(chǎng)安全管理制度的國際比較與借鑒
- 施工單位關(guān)于現(xiàn)場(chǎng)布置的工作聯(lián)系函
- 科技輔助小學(xué)語文教學(xué)的策略與實(shí)踐
- 飯店生產(chǎn)安全事故應(yīng)急預(yù)案
- 食品安全的應(yīng)急預(yù)案
- DB6528T 146-2024庫爾勒香梨雜交育種技術(shù)規(guī)程
- DB3702T 46.2-2024地理標(biāo)志產(chǎn)品 平度大花生 第2部分:質(zhì)量標(biāo)準(zhǔn)
- 專賣店員工聘用合同標(biāo)準(zhǔn)格式
- 個(gè)人信用抵押借款合同2025
- 北方、南方戲劇圈的雜劇文檔
- 燈謎大全及答案1000個(gè)
- 白酒銷售經(jīng)理述職報(bào)告
- 六年級(jí)英語上冊(cè)綜合測(cè)試卷(一)附答案
- 部編小學(xué)語文(6年級(jí)下冊(cè)第6單元)作業(yè)設(shè)計(jì)
- 洗衣機(jī)事業(yè)部精益降本總結(jié)及規(guī)劃 -美的集團(tuán)制造年會(huì)
- 2015-2022年湖南高速鐵路職業(yè)技術(shù)學(xué)院高職單招語文/數(shù)學(xué)/英語筆試參考題庫含答案解析
- 2023年菏澤醫(yī)學(xué)??茖W(xué)校單招綜合素質(zhì)模擬試題及答案解析
- 鋁合金門窗設(shè)計(jì)說明
- 小學(xué)數(shù)學(xué)-三角形面積計(jì)算公式的推導(dǎo)教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思
- 人教版數(shù)學(xué)八年級(jí)下冊(cè)同步練習(xí)(含答案)
評(píng)論
0/150
提交評(píng)論