版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆甘肅省白銀市會寧縣四中高一數(shù)學第一學期期末達標檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.若xlog34=1,則4x+4–x=A.1 B.2C. D.2.設函數(shù),點,,在的圖像上,且.對于,下列說法正確的是()①一定是鈍角三角形②可能是直角三角形③不可能是等腰三角形③可能是等腰三角形A①③ B.①④C.②③ D.②④3.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.函數(shù)(且)與函數(shù)在同一個坐標系內的圖象可能是A. B.C. D.5.命題,一元二次方程有實根,則()A.,一元二次方程沒有實根B.,一元二次方程沒有實根C.,一元二次方程有實根D.,一元二次方程有實根6.設函數(shù)f(x)=若,則實數(shù)的取值范圍是()A.B.C.D.7.下列函數(shù)中,既不是奇函數(shù)也不是偶函數(shù)的是A. B.C. D.8.四面體中,各個側面都是邊長為的正三角形,分別是和的中點,則異面直線與所成的角等于()A.30° B.45°C.60° D.90°9.已知是空間中兩直線,是空間中的一個平面,則下列命題正確的是()A.已知,若,則 B.已知,若,則C.已知,若,則 D.已知,若,則10.若,則等于A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.設點A(2,-3),B(-3,-2),直線過P(1,1)且與線段AB相交,則l的斜率k的取值范圍是_____12.已知函數(shù),則__________.13.方程的解在內,則的取值范圍是___________.14.設,用表示不超過的最大整數(shù).則稱為高斯函數(shù).例如:,,已知函數(shù),則的值域為___________.15.求方程在區(qū)間內的實數(shù)根,用“二分法”確定的下一個有根的區(qū)間是____________.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.已知向量,1若
,共線,求x的值;2若,求x的值;3當時,求與夾角的余弦值17.已知直線:,直線:.(1)若,求與的距離;(2)若,求與的交點的坐標.18.已知函數(shù)f(x)=(m∈Z)為偶函數(shù),且在(0,+∞)上為增函數(shù)(1)求m的值,并確定f(x)的解析式;(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,求出a的值,若不存在,請說明理由19.已知函數(shù)的圖象關于原點對稱,其中為常數(shù)(1)求的值;(2)當時,恒成立,求實數(shù)的取值范圍20.已知函數(shù),(1)求函數(shù)f(x)的最小正周期和單調遞增區(qū)間;(2)將函數(shù)的圖象上各點的縱坐標保持不變,橫坐標縮短到原來的,再把所得到的圖象向左平移個單位長度,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的值域21.已知函數(shù),其中(1)求函數(shù)的定義域;(2)若函數(shù)的最小值為,求的值
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、D【解析】條件可化為x=log43,運用對數(shù)恒等式,即可【詳解】∵xlog34=1,∴x=log43,∴4x=3,∴4x+4–x=3+.故選D【點睛】本題考查對數(shù)性質的簡單應用,屬于基礎題目2、A【解析】結合,得到,所以一定為鈍角三角形,可判定①正確,②錯誤;根據(jù)兩點間的距離公式和函數(shù)的變化率的不同,得到,可判定③正確,④不正確.【詳解】由題意,函數(shù)為單調遞增函數(shù),因為點,,在的圖像上,且,不妨設,可得,則,因為,可得,又由因為,,,,所以,所以所以,所以一定為鈍角三角形,所以①正確,②錯誤;由兩點間的距離公式,可得,根據(jù)指數(shù)函數(shù)和一次函數(shù)的變化率,可得點到的變化率小于點到點的變化率不相同,所以,所以不可能為等腰三角形,所以③正確,④不正確.故選:A.3、A【解析】利用充分條件和必要條件的定義判斷即可【詳解】,所以“”是“”的充分不必要條件故選:A4、C【解析】利用指數(shù)函數(shù)和二次函數(shù)的性質對各個選項一一進行判斷可得答案.【詳解】解:兩個函數(shù)分別為指數(shù)函數(shù)和二次函數(shù),其中二次函數(shù)的圖象過點,故排除A,D;二次函數(shù)的對稱軸為直線,當時,指數(shù)函數(shù)遞減,,C符合題意;當時,指數(shù)函數(shù)遞增,,B不合題意,故選C【點睛】本題通過對多個圖象的選擇考查指數(shù)函數(shù)、二次函數(shù)的圖象與性質,屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意選項一一排除.5、B【解析】根據(jù)全稱命題的否定為特稱命題可得出.【詳解】因為全稱命題的否定為特稱命題,所以,一元二次方程沒有實根.故選:B.6、C【解析】由于的范圍不確定,故應分和兩種情況求解.【詳解】當時,,由得,所以,可得:,當時,,由得,所以,即,即,綜上可知:或.故選:C【點睛】本題主要考查了分段函數(shù),解不等式的關鍵是對的范圍討論,分情況解,屬于中檔題.7、D【解析】根據(jù)函數(shù)奇偶性的概念,逐項判斷即可.【詳解】A中,由得,又,所以是偶函數(shù);B中,定義域為R,又,所以是偶函數(shù);C中,定義域為,又,所以是奇函數(shù);D中,定義域為R,且,所以非奇非偶.故選D【點睛】本題主要考查函數(shù)的奇偶性,熟記概念即可,屬于基礎題型.8、B【解析】利用中位線定理可得GE∥SA,則∠GEF為異面直線EF與SA所成的角,判斷三角形為等腰直角三角形即可.【詳解】取AC中點G,連接EG,GF,F(xiàn)C設棱長為2,則CF=,而CE=1∴EF=,GE=1,GF=1而GE∥SA,∴∠GEF為異面直線EF與SA所成的角∵EF=,GE=1,GF=1∴△GEF為等腰直角三角形,故∠GEF=45°故選:B.【點睛】求異面直線所成的角先要利用三角形中位線定理以及平行四邊形找到異面直線所成的角,然后利用直角三角形的性質及余弦定理求解,如果利用余弦定理求余弦,因為異面直線所成的角是直角或銳角,所以最后結果一定要取絕對值.9、D【解析】A.n和m的方向無法確定,不正確;B.要得到,需要n垂直于平面內兩條相交直線,不正確;C.直線n有可能在平面內,不正確;D.平行于平面的垂線的直線與此平面垂直,正確.【詳解】A.一條直線與一個平面平行,直線的方向無法確定,所以不一定正確;B.一條直線與平面內兩條相交直線垂直,則直線垂直于平面,無法表示直線n垂直于平面內兩條相交直線,所以不一定正確;C.直線n有可能在平面內,所以不一定正確;D.,則直線n與m的方向相同,,則,正確;故選D【點睛】本題考查了直線與平面的位置關系的判斷,遇到不正確的命題畫圖找出反例即可.本題屬于基礎題.10、B【解析】,.考點:三角恒等變形、誘導公式、二倍角公式、同角三角函數(shù)關系第II卷(非選擇題二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、k≥或k≤-4【解析】算出直線PA、PB的斜率,并根據(jù)斜率變化的過程中求得斜率的取值范圍詳解】直線PA的斜率為,同理可得PB的斜率為直線過點且與AB相交直線的斜率取值范圍是k≥或k≤-4故答案為k≥或k≤-412、2【解析】先求出,然后再求的值.【詳解】由題意可得,所以,故答案為:13、【解析】先令,按照單調性求出函數(shù)的值域,寫出的取值范圍即可.【詳解】令,顯然該函數(shù)增函數(shù),,值域為,故.故答案為:.14、【解析】對進行分類討論,結合高斯函數(shù)的知識求得的值域.【詳解】當為整數(shù)時,,當不是整數(shù),且時,,當不是整數(shù),且時,,所以的值域為.故答案為:15、【解析】根據(jù)二分法的步驟可求得結果.【詳解】令,因為,,,所以下一個有根的區(qū)間是.故答案為:三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1);(2);(3)【解析】(1)根據(jù)題意,由向量平行的坐標公式可得,解可得的值,即可得答案;(2)若,則有,利用數(shù)量積的坐標運算列方程,解得的值即可;(3)根據(jù)題意,由的值可得的坐標,由向量的坐標計算公式可得和的值,結合,計算可得答案【詳解】根據(jù)題意,向量,,若,則有,解可得若,則有,又由向量,,則有,即,解可得.根據(jù)題意,若,則有,,【點睛】本題主要考查兩個向量共線、垂直的性質,兩個向量坐標形式的運算,兩個向量夾角公式的應用,屬于中檔題17、(1).(2).【解析】分析:(1)先根據(jù)求出k的值,再利用平行線間的距離公式求與的距離.(2)先根據(jù)求出k的值,再解方程組得與的交點的坐標.詳解:(1)若,則由,即,解得或.當時,直線:,直線:,兩直線重合,不符合,故舍去;當時,直線:,直線:,所以.(2)若,則由,得.所以兩直線方程為:,:,聯(lián)立方程組,解得,所以與的交點的坐標為.點睛:(1)本題主要考查直線的位置關系和距離的計算,意在考查學生對這些知識的掌握水平和計算能力.(2)直線與直線平行,則且兩直線不重合.直線與直線垂直,則.18、(1)或,(2)存在實數(shù),使在區(qū)間上的最大值為2【解析】(1)由條件冪函數(shù),在上為增函數(shù),得到解得2分又因為所以或3分又因為是偶函數(shù)當時,不滿足為奇函數(shù);當時,滿足為偶函數(shù);所以5分(2)令,由得:在上有定義,且在上為增函數(shù).7分當時,因為所以8分當時,此種情況不存在,9分綜上,存在實數(shù),使在區(qū)間上的最大值為210分考點:函數(shù)的基本性質運用點評:解決該試題的關鍵是能理解函數(shù)的奇偶性和單調性的運用,能理解復合函數(shù)的性質得到最值,屬于基礎題19、(1)(2)【解析】(1)函數(shù)的圖象關于原點對稱,所以為奇函數(shù),有,代入即可得出的值;(2)時,恒成立轉化為即,令,求在的最大值即可.【小問1詳解】函數(shù)的圖象關于原點對稱,則函數(shù)為奇函數(shù),有,即,解得,當時,不滿足題意,所以;【小問2詳解】由,得,即,令,易知在上單調遞減,則的最大值為.又因為當時,恒成立,即在恒成立,所以.20、(1);(2)【解析】(1)根據(jù)正弦函數(shù)的周期性和單調性即可得出答案;(2)根據(jù)周期變換和平移變換求出函數(shù),再根據(jù)余弦函數(shù)的性質即可得出答案.【小問1詳解】解:由函數(shù),則函數(shù)f(x)的最小正周期,令,解得,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024專業(yè)加工承攬合同
- 2024西瓜種植收購合同范文
- 工程勞務承包合同的簡化版本
- 成人高等教育聯(lián)合舉辦協(xié)議
- 2024工程機械租賃合同范本
- 租房協(xié)議書示范
- 2024標識標牌合同
- 信息技術服務合作契約樣本
- 2024財產(chǎn)信托合同范文
- 2024年人力資源派遣協(xié)議范本
- 現(xiàn)患率調查匯總表
- 低壓電纜測絕緣施工方案
- 電動機基礎知識介紹
- 重慶十八中學2024屆物理八上期末教學質量檢測試題含解析
- 大數(shù)據(jù)營銷 試卷2
- 魚塘所有權證明
- 重點實驗室匯報
- 醫(yī)療器械自查表【模板】
- 1999年制干部履歷表
- 健康管理學教學大綱
- 公路施工安全技術交底資料(完整版)
評論
0/150
提交評論