2023-2024學年山西省平遙縣和誠高一上數(shù)學期末監(jiān)測試題含解析_第1頁
2023-2024學年山西省平遙縣和誠高一上數(shù)學期末監(jiān)測試題含解析_第2頁
2023-2024學年山西省平遙縣和誠高一上數(shù)學期末監(jiān)測試題含解析_第3頁
2023-2024學年山西省平遙縣和誠高一上數(shù)學期末監(jiān)測試題含解析_第4頁
2023-2024學年山西省平遙縣和誠高一上數(shù)學期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年山西省平遙縣和誠高一上數(shù)學期末監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.已知函數(shù)是定義在上的偶函數(shù),對任意,都有,當時,,則A. B.C.1 D.2.已知函數(shù),下列結論中錯誤的是()A.的圖像關于中心對稱B.在上單調(diào)遞減C.的圖像關于對稱D.的最大值為33.已知圓(,為常數(shù))與.若圓心與圓心關于直線對稱,則圓與的位置關系是()A.內(nèi)含 B.相交C.內(nèi)切 D.相離4.函數(shù)圖像大致為()A. B.C. D.5.終邊在x軸上的角的集合為()A. B.C. D.6.已知函數(shù),且,則A.3 B.C.9 D.7.全稱量詞命題“,”的否定為()A., B.,C., D.,8.已知函數(shù)是定義在上的偶函數(shù),當時,,則的值是A. B.C. D.9.若角的終邊和單位圓的交點坐標為,則()A. B.C. D.10.已知函數(shù)的值域為,則實數(shù)m的值為()A.2 B.3C.9 D.27二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.中,若,則角的取值集合為_________.12.使三角式成立的的取值范圍為_________13.冪函數(shù)y=f(x)的圖象過點(2,8),則14.(2016·桂林高二檢測)如圖所示,在四邊形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,將四邊形ABCD沿對角線BD折成四面體A′-BCD,使平面A′BD⊥平面BCD,則下列結論正確的是________.(1)A′C⊥BD.(2)∠BA′C=90°.(3)CA′與平面A′BD所成的角為30°.(4)四面體A′-BCD的體積為.15.若命題“,”為假命題,則實數(shù)的取值范圍為______.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.已知函數(shù),在區(qū)間上有最大值,最小值,設函數(shù).(1)求的值;(2)不等式在上恒成立,求實數(shù)的取值范圍;(3)方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.17.如圖,已知三棱錐中,,,為的中點,為的中點,且為正三角形.(1)求證:平面;(2)求證:平面;(3)若,,求三棱錐的體積.18.已知函數(shù).(1)求,的值;(2)在給定的坐標系中,畫出的圖象(不必列表);(3)若關于的方程恰有3個不相等的實數(shù)解,求實數(shù)的取值范圍.19.已知為定義在上的奇函數(shù),當時,函數(shù)解析式為.(1)求的值,并求出在上的解析式;(2)求在上的最值20.已知函數(shù),將函數(shù)的圖象向左平移個單位,再向上平移2個單位,得到函數(shù)的圖象.(1)求函數(shù)的解析式;(2)求函數(shù)在上的最大值和最小值.21.計算下列各式的值:(1);(2).

參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、C【解析】由題意,故選C2、B【解析】根據(jù)三角函數(shù)的性質(zhì),依次整體代入檢驗即可得答案.【詳解】解:對于A選項,當時,,所以是的對稱中心,故A選項正確;對于B選項,當時,,此時函數(shù)在區(qū)間上不單調(diào),故B選項錯誤;對于C選項,當時,,所以的圖像關于對稱,故C選項正確;對于D選項,的最大值為,故D選項正確.故選:B3、B【解析】由對稱求出,再由圓心距與半徑關系得圓與圓的位置關系【詳解】,,半徑為,關于直線的對稱點為,即,所以,圓半徑為,,又,所以兩圓相交故選:B4、C【解析】先分析給定函數(shù)的奇偶性,排除兩個選項,再在x>0時,探討函數(shù)值正負即可判斷得解.【詳解】函數(shù)的定義域為,,即函數(shù)是定義域上的奇函數(shù),其圖象關于原點對稱,排除選項A,B;x>0時,,而,則有,顯然選項D不滿足,C符合要求.故選:C5、B【解析】利用任意角的性質(zhì)即可得到結果【詳解】終邊在x軸上,可能為x軸正半軸或負半軸,所以可得角,故選B.【點睛】本題考查任意角的定義,屬于基礎題.6、C【解析】利用函數(shù)的奇偶性以及已知條件轉化求解即可【詳解】函數(shù)g(x)=ax3+btanx是奇函數(shù),且,因為函數(shù)f(x)=ax3+btanx+6(a,b∈R),且,可得=﹣3,則=﹣g()+6=3+6=9故選C【點睛】本題考查函數(shù)的奇偶性的應用,函數(shù)值的求法,考查計算能力.已知函數(shù)解析式求函數(shù)值,可以直接將變量直接代入解析式從而得到函數(shù)值,直接代入較為繁瑣的題目,可以考慮函數(shù)的奇偶性的應用,利用部分具有奇偶性的特點進行求解,就如這個題目.7、C【解析】由命題的否定的概念判斷.否定結論,存在量詞與全稱量詞互換.【詳解】根據(jù)全稱量詞命題的否定是存在量詞命題,可得命題“”的否定是“”故選:C.【點睛】本題考查命題的否定,屬于基礎題.8、B【解析】根據(jù)偶函數(shù)性質(zhì)的,再代入對應解析式得結果.【詳解】因為函數(shù)是定義在上的偶函數(shù),所以,選B.【點睛】本題考查偶函數(shù)應用,考查基本轉化求解能力,屬于基礎題.9、C【解析】直接利用三角函數(shù)的定義可得.【詳解】因為角的終邊和單位圓的交點坐標為,所以由三角函數(shù)定義可得:.故選:C10、C【解析】根據(jù)對數(shù)型復合函數(shù)的性質(zhì)計算可得;【詳解】解:因為函數(shù)的值域為,所以的最小值為,所以;故選:C二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、【解析】△ABC中,由tanA=1,求得A的值【詳解】∵△ABC中,tanA=1>0,故∴A=故答案為【點睛】本題主要考查三角函數(shù)的化簡,及與三角形的綜合,應注意三角形內(nèi)角的范圍12、【解析】根據(jù)同角三角函數(shù)間的基本關系,化為正余弦函數(shù),即可求出.【詳解】因為,,所以,所以,所以終邊在第三象限,.【點睛】本題主要考查了同角三角函數(shù)間的基本關系,三角函數(shù)在各象限的符號,屬于中檔題.13、64【解析】由冪函數(shù)y=f(x)=xα的圖象過點(2,8)【詳解】∵冪函數(shù)y=f(x)=xα的圖象過點∴2α=8∴f(x)=x∴f(4)=故答案為64【點睛】本題考查冪函數(shù)概念,考查運算求解能力,是基礎題14、(2)(4)【解析】詳解】若A′C⊥BD,又BD⊥CD,則BD⊥平面A′CD,則BD⊥A′D,顯然不可能,故(1)錯誤.因為BA′⊥A′D,BA′⊥CD,故BA′⊥平面A′CD,所以BA′⊥A′C,所以∠BA′C=90°,故(2)正確.因為平面A′BD⊥平面BCD,BD⊥CD,所以CD⊥平面A′BD,CA′與平面A′BD所成的角為∠CA′D,因為A′D=CD,所以∠CA′D=,故(3)錯誤.四面體A′-BCD的體積為V=S△BDA′·h=××1=,因為AB=AD=1,DB=,所以A′C⊥BD,綜上(2)(4)成立.點睛:立體幾何中折疊問題,要注重折疊前后垂直關系的變化,不變的垂直關系是解決問題的關鍵條件.15、【解析】命題為假命題時,二次方程無實數(shù)解,據(jù)此可求a的范圍.【詳解】若命題“,”為假命題,則一元二次方程無實數(shù)解,∴.∴a的取值范圍是:.故答案為:.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1);(2);(3)【解析】(1)利用二次函數(shù)閉區(qū)間上的最值,通過a與0的大小討論,列出方程,即可求a,b的值;(2)轉化不等式f(2x)﹣k?2x≥0,為k在一側,另一側利用換元法通過二次函數(shù)在x∈[﹣1,1]上恒成立,求出最值,即可求實數(shù)k的取值范圍;(3)化簡方程f(|2x﹣1|)+k(3)=0,轉化為兩個函數(shù)的圖象的交點的個數(shù),利用方程有三個不同的實數(shù)解,推出不等式然后求實數(shù)k的取值范圍【詳解】解:(1)g(x)=a(x﹣1)2+1+b﹣a,∵a>0,∴g(x)在[2,3]上為增函數(shù),故,可得,?∴a=1,b=0(2)方程f(2x)﹣k?2x≥0化為2x2≥k?2x,k≤1令t,k≤t2﹣2t+1,∵x∈[﹣1,1],∴t,記φ(t)=t2﹣2t+1,∴φ(t)min=φ(1)=0,∴k≤0(3)由f(|2x﹣1|)+k(3)=0得|2x﹣1|(2+3k)=0,|2x﹣1|2﹣(2+3k)|2x﹣1|+(1+2k)=0,|2x﹣1|≠0,令|2x﹣1|=t,則方程化為t2﹣(2+3k)t+(1+2k)=0(t≠0),∵方程|2x﹣1|(2+3k)=0有三個不同的實數(shù)解,∴由t=|2x﹣1|的圖象(如圖)知,t2﹣(2+3k)t+(1+2k)=0有兩個根t1、t2,且0<t1<1<t2或0<t1<1,t2=1,記φ(t)=t2﹣(2+3k)t+(1+2k),則或∴k>0【點睛】本題考查函數(shù)恒成立,二次函數(shù)閉區(qū)間上的最值的求法,考查轉化思想與數(shù)形結合的思想17、(1)見詳解;(2)見詳解;(3).【解析】(1)先證,可證平面.(2)先證,得,結合可證得平面.(3)等積轉換,由,可求得體積.【詳解】(1)證明:因為為的中點,為的中點,所以是的中位線,.又,,所以.(2)證明:因為為正三角形,為的中點,所以.又,所以.又因為,,所以.因為,所以.又因為,,所以.(3)因為,,所以,即是三棱錐的高.因為,為的中點,為正三角形,所以.由,可得,在直角三角形中,由,可得.于是.所以.【點睛】本題考查空間線面平行與垂直的證明,體積的計算.空間中的平行與垂直的證明過程就是利用相關定義、判定定理和性質(zhì)定理實現(xiàn)線線平行(垂直)、線面平行(垂直)、面面平行(垂直)的轉換.求三棱錐的體積常采用等積轉換的方法,選擇易求的底面積和高來求體積.18、(1),(2)圖象見解析(3)【解析】(1)由函數(shù)解析式直接代入求解;(2)根據(jù)函數(shù)解析式及函數(shù)的性質(zhì)畫出圖象;(3)利用數(shù)形結合的方法可求解.【小問1詳解】由解析可得:,因,所以.【小問2詳解】函數(shù)的圖象如下:【小問3詳解】方程有3個不相等的實數(shù)解等價于函數(shù)的圖象與的圖象有三個交點,結合(2)中的圖象可得的取值范圍為.19、(1)在上的解析式為;(2)函數(shù)在[0,1]上的最大與最小值分別為0,-2.【解析】(1)根據(jù)函數(shù)的奇偶性可知,代入即可求值;(2)利用換元得出新的函數(shù),再結合新的函數(shù)解析式求最值即可.【詳解】(1)為定義在[-1,1]上的奇函數(shù),且在處有意義,即,設,則又,所以,在上的解析式為(2)當,,∴設則當t=1時,取最大值,最大值為1-1=0.當t=0時,取最小值為-2.所以,函數(shù)在[0,1]上的最大與最小值分別為0,-2.20、(1)(2)見解析【解析】(1)首先化簡三角函數(shù)式,然后確定平移變換之后的函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論