版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年鞍山市重點中學(xué)高一上數(shù)學(xué)期末質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.函數(shù)的最大值為()A. B.C. D.2.已知函數(shù),若存在四個互不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B.C. D.3.劉徽(約公元225年—295年),魏晉期間偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一.他在割圓術(shù)中提出的“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個圓的內(nèi)接正邊形等分成個等腰三角形(如圖所示),當(dāng)變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術(shù)的思想,可以得到的近似值為()A. B.C. D.4.已知函數(shù),則是A.最小正周期為的奇函數(shù) B.最小正周期為的偶函數(shù)C.最小正周期為的奇函數(shù) D.最小正周期為的偶函數(shù)5.圓x2+y2+2x﹣4y+1=0的半徑為()A.1 B.C.2 D.46.不等式的解集是()A B.C.或 D.或7.已知扇形OAB的周長為12,圓心角大小為,則該扇形的面積是()cm.A.2 B.3C.6 D.98.如圖,是水平放置的的直觀圖,其中,,分別與軸,軸平行,則()A.2 B.C.4 D.9.若,,,則,,的大小關(guān)系是()A. B.C. D.10.若,則與在同一坐標(biāo)系中的圖象大致是()A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.的定義域為________________12.已知圓心角為2rad的扇形的周長為12,則該扇形的面積為____________.13.冪函數(shù)的圖像過點,則___________.14.下面有六個命題:①函數(shù)是偶函數(shù);②若向量的夾角為,則;③若向量的起點為,終點為,則與軸正方向的夾角的余弦值是;④終邊在軸上的角的集合是;⑤把函數(shù)的圖像向右平移得到的圖像;⑥函數(shù)在上是減函數(shù).其中,真命題的編號是__________.(寫出所有真命題的編號)15.已知a,b,c是空間中的三條直線,α是空間中的一個平面①若a⊥c,b⊥c,則a∥b;②若a∥α,b∥α,則a∥b;③若a∥α,b⊥α,則a⊥b;④若a∥b,a∥α,則b∥α;說法正確的序號是______三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.已知集合A=x13≤log(1)求A,B;(2)求?U(3)如果C=xx<a,且A∩C≠?,求a17.已知.(1)化簡;(2)若α=-,求f(α)的值.18.已知函數(shù)的定義域是
A
,不等式的解集是集合
B
,求集合
A
和
.19.已知,.(1)若,求;(2)若,求實數(shù)的取值范圍.20.甲乙兩人用兩顆質(zhì)地均勻的骰子(各面依次標(biāo)有數(shù)字1、2、3、4、5、6的正方體)做游戲,規(guī)則如下:若擲出的兩顆骰子點數(shù)之和為3的倍數(shù),則由原投擲人繼續(xù)投擲,否則由對方接著投擲.第一次由甲投擲(1)求第二次仍由甲投擲的概率;(2)求游戲前4次中乙投擲的次數(shù)為2的概率21.過點的直線被兩平行直線與所截線段的中點恰在直線上,求直線的方程
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、C【解析】先利用輔助角公式化簡,再由正弦函數(shù)的性質(zhì)即可求解.【詳解】,所以當(dāng)時,取得最大值,故選:C2、D【解析】令,則,由題意,有兩個不同的解,有兩個不相等的實根,由圖可知,得或,所以和各有兩個解當(dāng)有兩個解時,則,當(dāng)有兩個解時,則或,綜上,的取值范圍是,故選D點睛:本題考查函數(shù)性質(zhì)的應(yīng)用.本題為嵌套函數(shù)的應(yīng)用,一般的,我們應(yīng)用整體思想解決問題,所以令,則,由題意,有兩個不同的解,有兩個不相等的實根,再結(jié)合圖象逐步分析,解得答案3、B【解析】將一個圓的內(nèi)接正邊形等分成個等腰三角形;根據(jù)題意,可知個等腰三角形的面積和近似等于圓的面積,從而可求的近似值.【詳解】將一個圓的內(nèi)接正邊形等分成個等腰三角形,設(shè)圓的半徑為,則,即,所以.故選:B.4、B【解析】先求得,再根據(jù)余弦函數(shù)的周期性、奇偶性,判斷各個選項是否正確,從而得出結(jié)論【詳解】∵,∴=,∵,且T=,∴是最小正周期為偶函數(shù),故選B.【點睛】本題主要考查誘導(dǎo)公式,余弦函數(shù)的奇偶性、周期性,屬于基礎(chǔ)題5、C【解析】將圓的方程化為標(biāo)準(zhǔn)方程即可得圓的半徑.【詳解】由圓x2+y2+2x﹣4y+1=0化為標(biāo)準(zhǔn)方程有:,所以圓的半徑為2.故選:C【點睛】本題考查圓的一般方程與標(biāo)準(zhǔn)方程的互化,并由此得出圓的半徑大小,屬于基礎(chǔ)題.6、D【解析】將分式不等式移項、通分,再轉(zhuǎn)化為等價一元二次不等式,解得即可;【詳解】解:∵,,即,等價于且,解得或,∴所求不等式的解集為或,故選:D.7、D【解析】設(shè)扇形的半徑和弧長,根據(jù)周長和圓心角解方程得到,再利用扇形面積公式計算即得結(jié)果.【詳解】設(shè)扇形OAB的半徑r,弧長l,則周長,圓心角為,解得,故扇形面積為.故選:D8、D【解析】先確定是等腰直角三角形,求出,再確定原圖的形狀,進(jìn)而求出.【詳解】由題意可知是等腰直角三角形,,其原圖形是,,,,則,故選:D.9、A【解析】根據(jù)指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性,結(jié)合題意,即可得x,y,z的大小關(guān)系,即可得答案.【詳解】因為在上為單調(diào)遞增函數(shù),且,所以,即,因為在R上為單調(diào)遞增函數(shù),且,所以,即,又,所以.故選:A10、D【解析】根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)的圖象判斷【詳解】因為,,是減函數(shù),是增函數(shù),只有D滿足故選:D二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、【解析】由分子根式內(nèi)部的代數(shù)式大于等于0,分母不等于0列式求解x的取值集合即可得到答案.或x>5.∴的定義域為考點:函數(shù)的定義域及其求法.12、9【解析】根據(jù)題意條件,先設(shè)出扇形的半徑和弧長,并找到弧長與半徑之間的關(guān)系,通過已知的扇形周長,可以求解出扇形的半徑和弧長,然后再利用完成求解.【詳解】設(shè)扇形的半徑為,弧長為,由已知得,圓心角,則,因為扇形的周長為12,所以,所以,,則.故答案為:9.13、【解析】先設(shè),再由已知條件求出,即,然后求即可.【詳解】解:由為冪函數(shù),則可設(shè),又函數(shù)的圖像過點,則,則,即,則,故答案為:.【點睛】本題考查了冪函數(shù)的解析式的求法,重點考查了冪函數(shù)求值問題,屬基礎(chǔ)題.14、①⑤【解析】對于①函數(shù),則=,所以函數(shù)是偶函數(shù);故①對;對于②若向量的夾角為,根據(jù)數(shù)量積定義可得,此時的向量應(yīng)該為非零向量;故②錯;對于③=,所以與軸正方向的夾角的余弦值是-;故③錯;對于④終邊在軸上的角的集合是;故④錯;對于⑤把函數(shù)的圖像向右平移得到,故⑤對;對于⑥函數(shù)=在上是增函數(shù).故⑥錯;故答案為①⑤.15、③【解析】根據(jù)空間線面位置關(guān)系的定義,性質(zhì)判斷或舉反例說明【詳解】對于①,若a,b為平面α的直線,c⊥α,則a⊥c,b⊥c,但a∥b不一定成立,故①錯誤;對于②,若a∥α,b∥α,則a,b的關(guān)系不確定,故②錯誤;對于③,不妨設(shè)a在α上的射影為a′,則a′?α,a∥a′,由b⊥α可得b⊥a′,于是a⊥b,故③正確;對于④,若b?α,顯然結(jié)論不成立,故④錯誤.故答案為③【點睛】本題考查了空間線面位置關(guān)系的判斷,屬于中檔題,三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1)A=2,8,(2)?(3)2,+∞【解析】(1)根據(jù)函數(shù)y=log8x和函數(shù)y=(2)先求出集合A與集合B的交集,再求補集即可(3)根據(jù)集合?和集合A的交集為空集,可直接求出a的取值范圍【小問1詳解】根據(jù)題意,可得:log8813≤log故有:A=函數(shù)y=2x在區(qū)間-∞,+∞綜上,答案為:A=2,8,【小問2詳解】由(1)可知:A=2,8,則有:A∩B=故有:?故答案為:-∞,2【小問3詳解】由于A=x2≤x≤8,且A∩C≠?則有:a>2,故a的取值范圍為:2,+∞故答案為:2,+∞17、(1)(2)【解析】(1)直接利用誘導(dǎo)公式化簡即可;(2)根據(jù)誘導(dǎo)公式計算即可.【小問1詳解】解:;【小問2詳解】解:.18、;.【解析】先解出不等式得到集合A,再根據(jù)指數(shù)函數(shù)單調(diào)性解出集合B,然后根據(jù)補集和交集的定義求得答案.【詳解】由題意,,則,又,則,,于是.19、(1);(2).【解析】(1)根據(jù)題意,分別求出集合、,即可得到;(2)根據(jù)題意得,結(jié)合,即可得到實數(shù)的取值范圍.【詳解】(1)當(dāng)時,,或,因此.(2)由(1)知,或,故,又因,所以,解得,故實數(shù)的取值范圍是20、(1)(2)【解析】(1)由題意利用古典概型求概率的計算公式求得結(jié)果(2)游戲的前4次中乙投擲的次數(shù)為2,包含3種情況,根據(jù)獨立事件的乘法公式及互斥事件的加法公式,可計算結(jié)果【小問1詳解】求第二次仍由甲投,說明第一次擲出的點數(shù)之和為3的倍數(shù),所有的情況共有種,其中,擲出的點數(shù)之和為3的倍數(shù)的情況有、、、、、,、、、、、,共計12種情況,故第二次仍由甲投擲的概率為【小問2詳解】由(1)可得擲出的兩顆骰子點數(shù)之和為3的倍數(shù)的概率為,所以兩顆骰子點數(shù)之和不為3的倍數(shù)的概率為,游戲的前4次中乙投擲的次數(shù)為2,可能乙投擲的次數(shù)為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年地基買賣合同內(nèi)容與市場拓展3篇
- 2024年財產(chǎn)分割協(xié)議模板:離婚雙方專用的財產(chǎn)分配方案
- 2024展會活動交通及住宿安排合同樣本3篇
- 2024年研發(fā)合作合同:共同研發(fā)項目、分工、成果分配等細(xì)節(jié)
- 2024年電子商務(wù)平臺交易規(guī)則制定協(xié)議
- 2024年車間操作工人力承包協(xié)議版
- 2024年網(wǎng)絡(luò)推廣合同條款
- 2024年版權(quán)許可協(xié)議:網(wǎng)絡(luò)小說的改編權(quán)與播放權(quán)
- 2024年資產(chǎn)轉(zhuǎn)讓協(xié)議(離婚適用)
- 2024年示范性民間借款及擔(dān)保責(zé)任判定合同版B版
- 客服人員儀容儀表培訓(xùn)
- 第三方汽車物流運輸合同(3篇)
- JJF(京) 3012-2021 觸針式電動輪廓儀校準(zhǔn)規(guī)范
- 抗體藥物研發(fā)
- 2024年冀教版小學(xué)六年級上學(xué)期期末英語試卷及解答參考
- 遼寧省大連市2023-2024學(xué)年高三上學(xué)期雙基測試(期末考試) 地理 含答案
- 2024年江蘇省無錫惠山經(jīng)濟開發(fā)區(qū)招聘14人歷年高頻難、易錯點500題模擬試題附帶答案詳解
- 快件處理員(中級)職業(yè)技能鑒定考試題及答案
- 2024年企業(yè)環(huán)保工作計劃(三篇)
- 2023-2024公需科目(數(shù)字經(jīng)濟與驅(qū)動發(fā)展)考試題庫及答案
- 2024標(biāo)準(zhǔn)版勞務(wù)合同范本下載
評論
0/150
提交評論