山東省汶上縣市級名校2024屆中考聯(lián)考數(shù)學試題含解析_第1頁
山東省汶上縣市級名校2024屆中考聯(lián)考數(shù)學試題含解析_第2頁
山東省汶上縣市級名校2024屆中考聯(lián)考數(shù)學試題含解析_第3頁
山東省汶上縣市級名校2024屆中考聯(lián)考數(shù)學試題含解析_第4頁
山東省汶上縣市級名校2024屆中考聯(lián)考數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省汶上縣市級名校2024屆中考聯(lián)考數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.212.下列運算正確的是()A.a2+a3=a5 B.(a3)2÷a6=1 C.a2?a3=a6 D.(2+3)2=53.某種品牌手機經過二、三月份再次降價,每部售價由1000元降到810元,則平均每月降價的百分率為()A.20% B.11% C.10% D.9.5%4.根據《天津市北大港濕地自然保護總體規(guī)劃(2017﹣2025)》,2018年將建立養(yǎng)殖業(yè)退出補償機制,生態(tài)補水78000000m1.將78000000用科學記數(shù)法表示應為()A.780×105B.78×106C.7.8×107D.0.78×1085.化簡的結果為()A.﹣1 B.1 C. D.6.下列說法中正確的是()A.檢測一批燈泡的使用壽命適宜用普查.B.拋擲一枚均勻的硬幣,正面朝上的概率是,如果拋擲10次,就一定有5次正面朝上.C.“367人中有兩人是同月同日生”為必然事件.D.“多邊形內角和與外角和相等”是不可能事件.7.一次函數(shù)與反比例函數(shù)在同一個坐標系中的圖象可能是()A. B. C. D.8.下列運算,結果正確的是()A.m2+m2=m4 B.2m2n÷mn=4mC.(3mn2)2=6m2n4 D.(m+2)2=m2+49.如圖,四邊形ABCD中,AB=CD,AD∥BC,以點B為圓心,BA為半徑的圓弧與BC交于點E,四邊形AECD是平行四邊形,AB=3,則的弧長為()A. B.π C. D.310.的相反數(shù)是()A. B.2 C. D.11.下列命題中真命題是()A.若a2=b2,則a=bB.4的平方根是±2C.兩個銳角之和一定是鈍角D.相等的兩個角是對頂角12.如圖,某計算機中有、、三個按鍵,以下是這三個按鍵的功能.(1).:將熒幕顯示的數(shù)變成它的正平方根,例如:熒幕顯示的數(shù)為49時,按下后會變成1.(2).:將熒幕顯示的數(shù)變成它的倒數(shù),例如:熒幕顯示的數(shù)為25時,按下后會變成0.2.(3).:將熒幕顯示的數(shù)變成它的平方,例如:熒幕顯示的數(shù)為6時,按下后會變成3.若熒幕顯示的數(shù)為100時,小劉第一下按,第二下按,第三下按,之后以、、的順序輪流按,則當他按了第100下后熒幕顯示的數(shù)是多少()A.0.01 B.0.1 C.10 D.100二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算:(﹣)﹣2﹣2cos60°=_____.14.觀光塔是濰坊市區(qū)的標志性建筑.為測量其高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°,已知樓房高AB約是45m,根據以上觀測數(shù)據可求觀光塔的高CD是______m.15.如圖,在梯形ACDB中,AB∥CD,∠C+∠D=90°,AB=2,CD=8,E,F(xiàn)分別是AB,CD的中點,則EF=_____.16.如圖,在□ABCD中,AC與BD交于點M,點F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點E是BC的中點,若點P以1cm/秒的速度從點A出發(fā),沿AD向點F運動;點Q同時以2cm/秒的速度從點C出發(fā),沿CB向點B運動.點P運動到F點時停止運動,點Q也同時停止運動.當點P運動_____秒時,以點P、Q、E、F為頂點的四邊形是平行四邊形.17.為慶?!傲弧眱和?jié),某幼兒園舉行用火柴棒擺“金魚”比賽.如圖所示,按照這樣的規(guī)律,擺第n個圖,需用火柴棒的根數(shù)為_______________.18.方程x-1=的解為:______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在梯形中,,,,,點為邊上一動點,作⊥,垂足在邊上,以點為圓心,為半徑畫圓,交射線于點.(1)當圓過點時,求圓的半徑;(2)分別聯(lián)結和,當時,以點為圓心,為半徑的圓與圓相交,試求圓的半徑的取值范圍;(3)將劣弧沿直線翻折交于點,試通過計算說明線段和的比值為定值,并求出次定值.20.(6分)如圖,AB∥CD,△EFG的頂點F,G分別落在直線AB,CD上,GE交AB于點H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度數(shù).21.(6分)如圖,AC⊥BD,DE交AC于E,AB=DE,∠A=∠D.求證:AC=AE+BC.22.(8分)化簡:23.(8分)如圖,矩形ABCD的對角線AC、BD交于點O,且DE∥AC,CE∥BD.(1)求證:四邊形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面積.24.(10分)如圖,四邊形ABCD內接于圓,對角線AC與BD相交于點E,F(xiàn)在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.求證:(1)CD⊥DF;(2)BC=2CD.25.(10分)計算:(﹣2)0++4cos30°﹣|﹣|.26.(12分)如圖,已知∠AOB=45°,AB⊥OB,OB=1.(1)利用尺規(guī)作圖:過點M作直線MN∥OB交AB于點N(不寫作法,保留作圖痕跡);(1)若M為AO的中點,求AM的長.27.(12分)某數(shù)學社團成員想利用所學的知識測量某廣告牌的寬度(圖中線段MN的長),直線MN垂直于地面,垂足為點P.在地面A處測得點M的仰角為58°、點N的仰角為45°,在B處測得點M的仰角為31°,AB=5米,且A、B、P三點在一直線上.請根據以上數(shù)據求廣告牌的寬MN的長.(參考數(shù)據:sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】

根據已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【題目詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,

∴cosB==,

∴∠B=45°,

∵sinC===,

∴AD=3,

∴CD==4,

∴BD=3,

則△ABC的面積是:×AD×BC=×3×(3+4)=.

故選:A.【題目點撥】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關線段的長度是解決問題的關鍵.2、B【解題分析】

利用合并同類項對A進行判斷;根據冪的乘方和同底數(shù)冪的除法對B進行判斷;根據同底數(shù)冪的乘法法則對C進行判斷;利用完全平方公式對D進行判斷.【題目詳解】解:A、a2與a3不能合并,所以A選項錯誤;B、原式=a6÷a6=1,所以A選項正確;C、原式=a5,所以C選項錯誤;D、原式=2+26+3=5+26,所以D選項錯誤.故選:B.【題目點撥】本題考查同底數(shù)冪的乘除、二次根式的混合運算,:二次根式的混合運算先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.解題關鍵是在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當?shù)慕忸}途徑,往往能事半功倍.3、C【解題分析】

設二,三月份平均每月降價的百分率為,則二月份為,三月份為,然后再依據第三個月售價為1,列出方程求解即可.【題目詳解】解:設二,三月份平均每月降價的百分率為.根據題意,得=1.解得,(不合題意,舍去).答:二,三月份平均每月降價的百分率為10%【題目點撥】本題主要考查一元二次方程的應用,關于降價百分比的問題:若原數(shù)是a,每次降價的百分率為a,則第一次降價后為a(1-x);第二次降價后后為a(1-x)2,即:原數(shù)x(1-降價的百分率)2=后兩次數(shù).4、C【解題分析】

科學記數(shù)法記數(shù)時,主要是準確把握標準形式a×10n即可.【題目詳解】解:78000000=7.8×107.故選C.【題目點撥】科學記數(shù)法的形式是a×10n,其中1≤|a|<10,n是整數(shù),若這個數(shù)是大于10的數(shù),則n比這個數(shù)的整數(shù)位數(shù)少1.5、B【解題分析】

先把分式進行通分,把異分母分式化為同分母分式,再把分子相加,即可求出答案.【題目詳解】解:.故選B.6、C【解題分析】【分析】根據相關的定義(調查方式,概率,可能事件,必然事件)進行分析即可.【題目詳解】A.檢測一批燈泡的使用壽命不適宜用普查,因為有破壞性;B.拋擲一枚均勻的硬幣,正面朝上的概率是,如果拋擲10次,就可能有5次正面朝上,因為這是隨機事件;C.“367人中有兩人是同月同日生”為必然事件.因為一年只有365天或366天,所以367人中至少有兩個日子相同;D.“多邊形內角和與外角和相等”是可能事件.如四邊形內角和和外角和相等.故正確選項為:C【題目點撥】本題考核知識點:對(調查方式,概率,可能事件,必然事件)理解.解題關鍵:理解相關概念,合理運用舉反例法.7、B【解題分析】當k>0時,一次函數(shù)y=kx﹣k的圖象過一、三、四象限,反比例函數(shù)y=的圖象在一、三象限,∴A、C不符合題意,B符合題意;當k<0時,一次函數(shù)y=kx﹣k的圖象過一、二、四象限,反比例函數(shù)y=的圖象在二、四象限,∴D不符合題意.故選B.8、B【解題分析】

直接利用積的乘方運算法則、合并同類項法則和單項式除以單項式運算法則計算得出答案.【題目詳解】A.m2+m2=2m2,故此選項錯誤;B.2m2n÷mn=4m,正確;C.(3mn2)2=9m2n4,故此選項錯誤;D.(m+2)2=m2+4m+4,故此選項錯誤.故答案選:B.【題目點撥】本題考查了乘方運算法則、合并同類項法則和單項式除以單項式運算法則,解題的關鍵是熟練的掌握乘方運算法則、合并同類項法則和單項式除以單項式運算法則.9、B【解題分析】∵四邊形AECD是平行四邊形,

∴AE=CD,

∵AB=BE=CD=3,

∴AB=BE=AE,

∴△ABE是等邊三角形,

∴∠B=60°,∴的弧長=.故選B.10、D【解題分析】

因為-+=0,所以-的相反數(shù)是.故選D.11、B【解題分析】

利用對頂角的性質、平方根的性質、銳角和鈍角的定義分別判斷后即可確定正確的選項.【題目詳解】A、若a2=b2,則a=±b,錯誤,是假命題;B、4的平方根是±2,正確,是真命題;C、兩個銳角的和不一定是鈍角,故錯誤,是假命題;D、相等的兩個角不一定是對頂角,故錯誤,是假命題.故選B.【題目點撥】考查了命題與定理的知識,解題的關鍵是了解對頂角的性質、平方根的性質、銳角和鈍角的定義,難度不大.12、B【解題分析】

根據題中的按鍵順序確定出顯示的數(shù)即可.【題目詳解】解:根據題意得:=40,=0.4,0.42=0.04,=0.4,=40,402=400,400÷6=46…4,則第400次為0.4.故選B.【題目點撥】此題考查了計算器﹣數(shù)的平方,弄清按鍵順序是解本題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解題分析】

按順序先進行負指數(shù)冪的運算、代入特殊角的三角函數(shù)值,然后再進行減法運算即可.【題目詳解】(﹣)﹣2﹣2cos60°=4-2×=3,故答案為3.【題目點撥】本題考查了實數(shù)的運算,涉及了負指數(shù)冪、特殊角的三角函數(shù)值,熟練掌握相關的運算法則是解題的關鍵.14、135【解題分析】試題分析:根據題意可得:∠BDA=30°,∠DAC=60°,在Rt△ABD中,因為AB=45m,所以AD=m,所以在Rt△ACD中,CD=AD=×=135m.考點:解直角三角形的應用.15、3【解題分析】

延長AC和BD,交于M點,M、E、F三點共線,EF=MF-ME.【題目詳解】延長AC和BD,交于M點,M、E、F三點共線,∵∠C+∠D=90°,∴△MCD是直角三角形,∴MF=,同理ME=,∴EF=MF-ME=4-1=3.【題目點撥】本題考查了直角三角形斜邊中線的性質.16、3或1【解題分析】

由四邊形ABCD是平行四邊形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可證得FB=FD,求出AD的長,得出CE的長,設當點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據題意列出方程并解方程即可得出結果.【題目詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵點E是BC的中點,∴CE=BC=AD=9cm,要使點P、Q、E、F為頂點的四邊形是平行四邊形,則PF=EQ即可,設當點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據題意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案為3或1.【題目點撥】本題考查了平行四邊形的判定與性質、等腰三角形的判定與性質以及一元一次方程的應用等知識.注意掌握分類討論思想的應用是解此題的關鍵.17、6n+1.【解題分析】尋找規(guī)律:不難發(fā)現(xiàn),后一個圖形比前一個圖形多6根火柴棒,即:第1個圖形有8根火柴棒,第1個圖形有14=6×1+8根火柴棒,第3個圖形有10=6×1+8根火柴棒,……,第n個圖形有6n+1根火柴棒.18、【解題分析】

兩邊平方解答即可.【題目詳解】原方程可化為:(x-1)2=1-x,

解得:x1=0,x2=1,

經檢驗,x=0不是原方程的解,x=1是原方程的解

故答案為.【題目點撥】此題考查無理方程的解法,關鍵是把兩邊平方解答,要注意解答后一定要檢驗.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)x=1(2)(1)【解題分析】

(1)作AM⊥BC、連接AP,由等腰梯形性質知BM=4、AM=1,據此知tanB=tanC=,從而可設PH=1k,則CH=4k、PC=5k,再表示出PA的長,根據PA=PH建立關于k的方程,解之可得;(2)由PH=PE=1k、CH=4k、PC=5k及BC=9知BE=9?8k,由△ABE∽△CEH得,據此求得k的值,從而得出圓P的半徑,再根據兩圓間的位置關系求解可得;(1)在圓P上取點F關于EH的對稱點G,連接EG,作PQ⊥EG、HN⊥BC,先證△EPQ≌△PHN得EQ=PN,由PH=1k、HC=4k、PC=5k知sinC=、cosC=,據此得出NC=k、HN=k及PN=PC?NC=k,繼而表示出EF、EH的長,從而出答案.【題目詳解】(1)作AM⊥BC于點M,連接AP,如圖1,∵梯形ABCD中,AD//BC,且AB=DC=5、AD=1、BC=9,∴BM=4、AM=1,∴tanB=tanC=,∵PH⊥DC,∴設PH=1k,則CH=4k、PC=5k,∵BC=9,∴PM=BC?BM?PC=5?5k,∴AP=AM+PM=9+(5?5k),∵PA=PH,∴9+(5?5k)=9k,解得:k=1或k=,當k=時,CP=5k=>9,舍去;∴k=1,則圓P的半徑為1.(2)如圖2,由(1)知,PH=PE=1k、CH=4k、PC=5k,∵BC=9,∴BE=BC?PE?PC=9?8k,∵△ABE∽△CEH,∴,即,解得:k=,則PH=,即圓P的半徑為,∵圓B與圓P相交,且BE=9?8k=,∴<r<;(1)在圓P上取點F關于EH的對稱點G,連接EG,作PQ⊥EG于G,HN⊥BC于N,則EG=EF、∠1=∠1、EQ=QG、EF=EG=2EQ,∴∠GEP=2∠1,∵PE=PH,∴∠1=∠2,∴∠4=∠1+∠2=2∠1,∴∠GEP=∠4,∴△EPQ≌△PHN,∴EQ=PN,由(1)知PH=1k、HC=4k、PC=5k,∴sinC=、cosC=,∴NC=k、HN=k,∴PN=PC?NC=k,∴EF=EG=2EQ=2PN=k,EH=,∴,故線段EH和EF的比值為定值.【題目點撥】此題考查全等三角形的性質,相似三角形的性質,解直角三角形,勾股定理,解題關鍵在于作輔助線.20、20°【解題分析】

依據三角形內角和定理可得∠FGH=55°,再根據GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根據∠FHG是△EFH的外角,即可得出∠EFB=55°-35°=20°.【題目詳解】∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.【題目點撥】本題考查了平行線的性質,兩直線平行時,應該想到它們的性質,由兩直線平行的關系得到角之間的數(shù)量關系,從而達到解決問題的目的.21、見解析.【解題分析】

由“SAS”可證△ABC≌△DEC,可得BC=CE,即可得結論.【題目詳解】證明:∵AB=DE,∠A=∠D,∠ACB=∠DCE=90°∴△ABC≌△DEC(SAS)∴BC=CE,∵AC=AE+CE∴AC=AE+BC【題目點撥】本題考查了全等三角形的判定和性質,熟練運用全等三角形的性質是本題的關鍵.22、x+2【解題分析】

先把括號里的分式通分,化簡,再計算除法.【題目詳解】解:原式==x+2【題目點撥】此題重點考察學生對分式的化簡的應用,掌握通分和約分是解題的關鍵.23、(1)證明見解析;(1).【解題分析】

(1)由平行四邊形的判定得出四邊形OCED是平行四邊形,根據矩形的性質求出OC=OD,根據菱形的判定得出即可.(1)解直角三角形求出BC=1.AB=DC=1,連接OE,交CD于點F,根據菱形的性質得出F為CD中點,求出OF=BC=1,求出OE=1OF=1,求出菱形的面積即可.【題目詳解】證明:,,四邊形OCED是平行四邊形,矩形ABCD,,,,,四邊形OCED是菱形;在矩形ABCD中,,,,,,連接OE,交CD于點F,四邊形OCED為菱形,為CD中點,為BD中點,,,.【題目點撥】本題主要考查了矩形的性質和菱形的性質和判定的應用,能靈活運用定理進行推理是解此題的關鍵,注意:菱形的面積等于對角線積的一半.24、(1)詳見解析;(2)詳見解析.【解題分析】

(1)利用在同圓中所對的弧相等,弦相等,所對的圓周角相等,三角形內角和可證得∠CDF=90°,則CD⊥DF;(2)應先找到BC的一半,證明BC的一半和CD相等即可.【題目詳解】證明:(1)∵AB=AD,∴弧AB=弧AD,∠ADB=∠ABD.∵∠ACB=∠ADB,∠ACD=∠ABD,∴∠ACB=∠ADB=∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論