2024屆上海市存志中學中考聯考數學試題含解析_第1頁
2024屆上海市存志中學中考聯考數學試題含解析_第2頁
2024屆上海市存志中學中考聯考數學試題含解析_第3頁
2024屆上海市存志中學中考聯考數學試題含解析_第4頁
2024屆上海市存志中學中考聯考數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆上海市存志中學中考聯考數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,直線y=3x+6與x,y軸分別交于點A,B,以OB為底邊在y軸右側作等腰△OBC,將點C向左平移5個單位,使其對應點C′恰好落在直線AB上,則點C的坐標為()A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)2.四根長度分別為3,4,6,x(x為正整數)的木棒,從中任取三根.首尾順次相接都能組成一個三角形,則().A.組成的三角形中周長最小為9 B.組成的三角形中周長最小為10C.組成的三角形中周長最大為19 D.組成的三角形中周長最大為163.如圖,在菱形ABCD中,∠A=60°,E是AB邊上一動點(不與A、B重合),且∠EDF=∠A,則下列結論錯誤的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等邊三角形 D.△BEF是等腰三角形4.不透明的袋子中裝有形狀、大小、質地完全相同的6個球,其中4個黑球、2個白球,從袋子中一次摸出3個球,下列事件是不可能事件的是()A.摸出的是3個白球 B.摸出的是3個黑球C.摸出的是2個白球、1個黑球 D.摸出的是2個黑球、1個白球5.如圖,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,則∠CDE的大小是()A.40° B.43° C.46° D.54°6.如圖,等邊△ABC內接于⊙O,已知⊙O的半徑為2,則圖中的陰影部分面積為(

)A.

B.

C.

D.7.已知二次函數(為常數),當自變量的值滿足時,與其對應的函數值的最小值為4,則的值為()A.1或5 B.或3 C.或1 D.或58.隨機擲一枚均勻的硬幣兩次,至少有一次正面朝上的概率為()A. B. C. D.9.半徑為3的圓中,一條弦長為4,則圓心到這條弦的距離是()A.3 B.4 C. D.10.直線y=x+4與x軸、y軸分別交于點A和點B,點C,D分別為線段AB,OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)11.有下列四種說法:①半徑確定了,圓就確定了;②直徑是弦;③弦是直徑;④半圓是弧,但弧不一定是半圓.其中,錯誤的說法有()A.1種 B.2種 C.3種 D.4種12.二次函數y=ax2+bx+c的圖象在平面直角坐標系中的位置如圖所示,則一次函數y=ax+b與反比例函數y=在同一平面直角坐標系中的圖象可能是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若一個多邊形每個內角為140°,則這個多邊形的邊數是________.14.隨意的拋一粒豆子,恰好落在圖中的方格中(每個方格除顏色外完全相同),那么這粒豆子落在黑色方格中的可能性是_____.15.一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動一個半徑為10cm的圓盤,如圖所示,AB與CD水平,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤從A點滾動到D點其圓心所經過的路線長為____cm.16.如圖,把一塊含有45°角的直角三角板的兩個頂點放在直尺的對邊上.如果∠1=20°,那么∠2的度數是_____.17.將數軸按如圖所示從某一點開始折出一個等邊三角形ABC,設點A表示的數為x﹣3,點B表示的數為2x+1,點C表示的數為﹣4,若將△ABC向右滾動,則x的值等于_____,數字2012對應的點將與△ABC的頂點_____重合.18.如果拋物線y=(k﹣2)x2+k的開口向上,那么k的取值范圍是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,有長為14m的籬笆,現一面利用墻(墻的最大可用長度a為10m)圍成中間隔有一道籬笆的長方形花圃,設花圃的寬AB為xm,面積為Sm1.求S與x的函數關系式及x值的取值范圍;要圍成面積為45m1的花圃,AB的長是多少米?當AB的長是多少米時,圍成的花圃的面積最大?20.(6分)列方程解應用題八年級學生去距學校10km的博物館參觀,一部分學生騎自行車先走,過了20min后,其余學生乘汽車出發(fā),結果他們同時到達.已知汽車的速度是騎車學生速度的2倍,求騎車學生的速度.21.(6分)下面是小星同學設計的“過直線外一點作已知直線的平行線”的尺規(guī)作圖過程:已知:如圖,直線l和直線l外一點A求作:直線AP,使得AP∥l作法:如圖①在直線l上任取一點B(AB與l不垂直),以點A為圓心,AB為半徑作圓,與直線l交于點C.②連接AC,AB,延長BA到點D;③作∠DAC的平分線AP.所以直線AP就是所求作的直線根據小星同學設計的尺規(guī)作圖過程,使用直尺和圓規(guī),補全圖形(保留作圖痕跡)完成下面的證明證明:∵AB=AC,∴∠ABC=∠ACB(填推理的依據)∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依據)∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依據)22.(8分)某村大力發(fā)展經濟作物,其中果樹種植已初具規(guī)模,該村果農小張種植了黃桃樹和蘋果樹,為進一步優(yōu)化種植結構,小張將前年和去年兩種水果的銷售情況進行了對比:前年黃桃的市場銷售量為1000千克,銷售均價為6元/千克,去年黃桃的市場銷售量比前年減少了m%(m≠0),銷售均價與前年相同;前年蘋果的市場銷售量為2000千克,銷售均價為4元/千克,去年蘋果的市場銷售量比前年增加了2m%,但銷售均價比前年減少了m%.如果去年黃桃和蘋果的市場銷售總金額與前年黃桃和蘋果的市場銷售總金額相同,求m的值.23.(8分)有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨18噸,2輛大貨車與6輛小貨車一次可以運貨17噸.請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸?目前有33噸貨物需要運輸,貨運公司擬安排大小貨車共計10輛,全部貨物一次運完,其中每輛大貨車一次運費花費130元,每輛小貨車一次運貨花費100元,請問貨運公司應如何安排車輛最節(jié)省費用?24.(10分)如圖,在平面直角坐標系中,點O為坐標原點,已知△ABC三個定點坐標分別為A(﹣4,1),B(﹣3,3),C(﹣1,2).畫出△ABC關于x軸對稱的△A1B1C1,點A,B,C的對稱點分別是點A1、B1、C1,直接寫出點A1,B1,C1的坐標:A1(,),B1(,),C1(,);畫出點C關于y軸的對稱點C2,連接C1C2,CC2,C1C,并直接寫出△CC1C2的面積是.25.(10分)解方程式:-3=26.(12分)計算:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1.27.(12分)如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.求證:DP是⊙O的切線;若⊙O的半徑為3cm,求圖中陰影部分的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】令x=0,y=6,∴B(0,6),∵等腰△OBC,∴點C在線段OB的垂直平分線上,∴設C(a,3),則C'(a-5,3),∴3=3(a-5)+6,解得a=4,∴C(4,3).故選B.點睛:掌握等腰三角形的性質、函數圖像的平移.2、D【解題分析】

首先寫出所有的組合情況,再進一步根據三角形的三邊關系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進行分析.【題目詳解】解:其中的任意三根的組合有3、4、1;3、4、x;3、1、x;4、1、x共四種情況,由題意:從中任取三根,首尾順次相接都能組成一個三角形,可得3<x<7,即x=4或5或1.①當三邊為3、4、1時,其周長為3+4+1=13;②當x=4時,周長最小為3+4+4=11,周長最大為4+1+4=14;③當x=5時,周長最小為3+4+5=12,周長最大為4+1+5=15;④若x=1時,周長最小為3+4+1=13,周長最大為4+1+1=11;綜上所述,三角形周長最小為11,最大為11,故選:D.【題目點撥】本題考查的是三角形三邊關系,利用了分類討論的思想.掌握三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答本題的關鍵.3、D【解題分析】

連接BD,可得△ADE≌△BDF,然后可證得DE=DF,AE=BF,即可得△DEF是等邊三角形,然后可證得∠ADE=∠BEF.【題目詳解】連接BD,∵四邊形ABCD是菱形,

∴AD=AB,∠ADB=∠ADC,AB∥CD,

∵∠A=60°,

∴∠ADC=120°,∠ADB=60°,

同理:∠DBF=60°,

即∠A=∠DBF,

∴△ABD是等邊三角形,

∴AD=BD,

∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,

∴∠ADE=∠BDF,

∵在△ADE和△BDF中,,

∴△ADE≌△BDF(ASA),

∴DE=DF,AE=BF,故A正確;

∵∠EDF=60°,

∴△EDF是等邊三角形,

∴C正確;

∴∠DEF=60°,

∴∠AED+∠BEF=120°,

∵∠AED+∠ADE=180°-∠A=120°,

∴∠ADE=∠BEF;

故B正確.

∵△ADE≌△BDF,

∴AE=BF,

同理:BE=CF,

但BE不一定等于BF.

故D錯誤.

故選D.【題目點撥】本題考查了菱形的性質、等邊三角形的判定與性質以及全等三角形的判定與性質,解題的關鍵是正確尋找全等三角形解決問題.4、A【解題分析】由題意可知,不透明的袋子中總共有2個白球,從袋子中一次摸出3個球都是白球是不可能事件,故選B.5、C【解題分析】

根據DE∥AB可求得∠CDE=∠B解答即可.【題目詳解】解:∵DE∥AB,∴∠CDE=∠B=46°,故選:C.【題目點撥】本題主要考查平行線的性質:兩直線平行,同位角相等.快速解題的關鍵是牢記平行線的性質.6、A【解題分析】解:連接OB、OC,連接AO并延長交BC于H,則AH⊥BC.∵△ABC是等邊三角形,∴BH=AB=,OH=1,∴△OBC的面積=×BC×OH=,則△OBA的面積=△OAC的面積=△OBC的面積=,由圓周角定理得,∠BOC=120°,∴圖中的陰影部分面積==.故選A.點睛:本題考查的是三角形的外接圓與外心、扇形面積的計算,掌握等邊三角形的性質、扇形面積公式是解題的關鍵.7、D【解題分析】

由解析式可知該函數在時取得最小值0,拋物線開口向上,當時,y隨x的增大而增大;當時,y隨x的增大而減??;根據時,函數的最小值為4可分如下三種情況:①若,時,y取得最小值4;②若-1<h<3時,當x=h時,y取得最小值為0,不是4;③若,當x=3時,y取得最小值4,分別列出關于h的方程求解即可.【題目詳解】解:∵當x>h時,y隨x的增大而增大,當時,y隨x的增大而減小,并且拋物線開口向上,

∴①若,當時,y取得最小值4,

可得:4,

解得或(舍去);

②若-1<h<3時,當x=h時,y取得最小值為0,不是4,

∴此種情況不符合題意,舍去;

③若-1≤x≤3<h,當x=3時,y取得最小值4,

可得:,

解得:h=5或h=1(舍).

綜上所述,h的值為-3或5,

故選:D.【題目點撥】本題主要考查二次函數的性質和最值,根據二次函數的性質和最值分類討論是解題的關鍵.8、D【解題分析】

先求出兩次擲一枚硬幣落地后朝上的面的所有情況,再根據概率公式求解.【題目詳解】隨機擲一枚均勻的硬幣兩次,落地后情況如下:至少有一次正面朝上的概率是,故選:D.【題目點撥】本題考查了隨機事件的概率,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率.9、C【解題分析】如圖所示:過點O作OD⊥AB于點D,∵OB=3,AB=4,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD=.故選C.10、C【解題分析】

作點D關于x軸的對稱點D′,連接CD′交x軸于點P,此時PC+PD值最小,如圖所示.直線y=x+4與x軸、y軸的交點坐標為A(﹣6,0)和點B(0,4),因點C、D分別為線段AB、OB的中點,可得點C(﹣3,1),點D(0,1).再由點D′和點D關于x軸對稱,可知點D′的坐標為(0,﹣1).設直線CD′的解析式為y=kx+b,直線CD′過點C(﹣3,1),D′(0,﹣1),所以,解得:,即可得直線CD′的解析式為y=﹣x﹣1.令y=﹣x﹣1中y=0,則0=﹣x﹣1,解得:x=﹣,所以點P的坐標為(﹣,0).故答案選C.考點:一次函數圖象上點的坐標特征;軸對稱-最短路線問題.11、B【解題分析】

根據弦的定義、弧的定義、以及確定圓的條件即可解決.【題目詳解】解:圓確定的條件是確定圓心與半徑,是假命題,故此說法錯誤;直徑是弦,直徑是圓內最長的弦,是真命題,故此說法正確;弦是直徑,只有過圓心的弦才是直徑,是假命題,故此說法錯誤;④半圓是弧,但弧不一定是半圓,圓的任意一條直徑的兩個端點把圓分成兩條弧,每一條弧都叫半圓,所以半圓是?。劝雸A大的弧是優(yōu)弧,比半圓小的弧是劣弧,不是所有的弧都是半圓,是真命題,故此說法正確.

其中錯誤說法的是①③兩個.故選B.【題目點撥】本題考查弦與直徑的區(qū)別,弧與半圓的區(qū)別,及確定圓的條件,不要將弦與直徑、弧與半圓混淆.12、C【解題分析】試題分析:∵二次函數圖象開口方向向下,∴a<0,∵對稱軸為直線>0,∴b>0,∵與y軸的正半軸相交,∴c>0,∴的圖象經過第一、二、四象限,反比例函數圖象在第一三象限,只有C選項圖象符合.故選C.考點:1.二次函數的圖象;2.一次函數的圖象;3.反比例函數的圖象.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、九【解題分析】

根據多邊形的內角和定理:180°?(n-2)進行求解即可.【題目詳解】由題意可得:180°(n?2)=140°n,解得n=9,故多邊形是九邊形.故答案為9.【題目點撥】本題考查了多邊形的內角和定理,解題的關鍵是熟練的掌握多邊形的內角和定理.14、【解題分析】

根據面積法:求出豆子落在黑色方格的面積與總面積的比即可解答.【題目詳解】∵共有15個方格,其中黑色方格占5個,∴這粒豆子落在黑色方格中的概率是=,故答案為.【題目點撥】此題考查了幾何概率的求法,利用概率=相應的面積與總面積之比求出是解題關鍵.15、【解題分析】試題解析:如下圖,畫出圓盤滾動過程中圓心移動路線的分解圖象.可以得出圓盤滾動過程中圓心走過的路線由線段OO1,線段O1O2,圓弧,線段O3O4四部分構成.其中O1E⊥AB,O1F⊥BC,O2C⊥BC,O3C⊥CD,O4D⊥CD.∵BC與AB延長線的夾角為60°,O1是圓盤在AB上滾動到與BC相切時的圓心位置,∴此時⊙O1與AB和BC都相切.則∠O1BE=∠O1BF=60度.此時Rt△O1BE和Rt△O1BF全等,在Rt△O1BE中,BE=cm.∴OO1=AB-BE=(60-)cm.∵BF=BE=cm,∴O1O2=BC-BF=(40-)cm.∵AB∥CD,BC與水平夾角為60°,∴∠BCD=120度.又∵∠O2CB=∠O3CD=90°,∴∠O2CO3=60度.則圓盤在C點處滾動,其圓心所經過的路線為圓心角為60°且半徑為10cm的圓?。嗟拈L=×2π×10=πcm.∵四邊形O3O4DC是矩形,∴O3O4=CD=40cm.綜上所述,圓盤從A點滾動到D點,其圓心經過的路線長度是:(60-)+(40-)+π+40=(140-+π)cm.16、25°.【解題分析】∵直尺的對邊平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.17、﹣1C.【解題分析】∵將數軸按如圖所示從某一點開始折出一個等邊三角形ABC,設點A表示的數為x﹣1,點B表示的數為2x+1,點C表示的數為﹣4,∴﹣4﹣(2x+1)=2x+1﹣(x﹣1);∴﹣1x=9,x=﹣1.故A表示的數為:x﹣1=﹣1﹣1=﹣6,點B表示的數為:2x+1=2×(﹣1)+1=﹣5,即等邊三角形ABC邊長為1,數字2012對應的點與﹣4的距離為:2012+4=2016,∵2016÷1=672,C從出發(fā)到2012點滾動672周,∴數字2012對應的點將與△ABC的頂點C重合.故答案為﹣1,C.點睛:此題主要考查了等邊三角形的性質,實數與數軸,一元一次方程等知識,本題將數與式的考查有機地融入“圖形與幾何”中,滲透“數形結合思想”、“方程思想”等,也是一道較優(yōu)秀的操作活動型問題.18、k>2【解題分析】

根據二次函數的性質可知,當拋物線開口向上時,二次項系數k﹣2>1.【題目詳解】因為拋物線y=(k﹣2)x2+k的開口向上,所以k﹣2>1,即k>2,故答案為k>2.【題目點撥】本題考查二次函數,解題的關鍵是熟練運用二次函數的圖象與性質,本題屬于中等題型.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)S=﹣3x1+14x,≤x<8;(1)5m;(3)46.67m1【解題分析】

(1)設花圃寬AB為xm,則長為(14-3x),利用長方形的面積公式,可求出S與x關系式,根據墻的最大長度求出x的取值范圍;(1)根據(1)所求的關系式把S=2代入即可求出x,即AB;(3)根據二次函數的性質及x的取值范圍求出即可.【題目詳解】解:(1)根據題意,得S=x(14﹣3x),即所求的函數解析式為:S=﹣3x1+14x,又∵0<14﹣3x≤10,∴;(1)根據題意,設花圃寬AB為xm,則長為(14-3x),∴﹣3x1+14x=2.整理,得x1﹣8x+15=0,解得x=3或5,當x=3時,長=14﹣9=15>10不成立,當x=5時,長=14﹣15=9<10成立,∴AB長為5m;(3)S=14x﹣3x1=﹣3(x﹣4)1+48∵墻的最大可用長度為10m,0≤14﹣3x≤10,∴,∵對稱軸x=4,開口向下,∴當x=m,有最大面積的花圃.【題目點撥】二次函數在實際生活中的應用是本題的考點,根據題目給出的條件,找出合適的等量關系,列出方程是解題的關鍵.20、15【解題分析】試題分析:設騎車學生的速度為,利用時間關系列方程解應用題,一定要檢驗.試題解析:解:設騎車學生的速度為,由題意得,解得.經檢驗是原方程的解.答:騎車學生的速度為15.21、(1)詳見解析;(2)(等邊對等角),(三角形外角性質),(同位角相等,兩直線平行).【解題分析】

(1)根據角平分線的尺規(guī)作圖即可得;

(2)分別根據等腰三角形的性質、三角形外角的性質和平行線的判定求解可得.【題目詳解】解:(1)如圖所示,直線AP即為所求.(2)證明:∵AB=AC,∴∠ABC=∠ACB(等邊對等角),∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(三角形外角性質),∴∠DAC=2∠ABC,∵AP平分∠DAC,∴∠DAC=2∠DAP,∴∠DAP=∠ABC,∴AP∥l(同位角相等,兩直線平行),故答案為(等邊對等角),(三角形外角性質),(同位角相等,兩直線平行).【題目點撥】本題主要考查作圖能力,解題的關鍵是掌握角平分線的尺規(guī)作圖、等腰三角形的性質、三角形外角的性質和平行線的判定.22、m的值是12.1.【解題分析】

根據去年黃桃和蘋果的市場銷售總金額與前年黃桃和蘋果的市場銷售總金額相同,可以列出相應的方程,從而可以求得m的值【題目詳解】由題意可得,1000×6+2000×4=1000×(1﹣m%)×6+2000×(1+2m%)×4(1﹣m%)解得,m1=0(舍去),m2=12.1,即m的值是12.1.【題目點撥】本題考查一元二次方程的應用,解答本題的關鍵是明確題意,列出相應的方程,求出m的值,注意解答中是m%,最終求得的是m的值.23、(1)1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸;(2)貨運公司應安排大貨車8輛時,小貨車2輛時最節(jié)省費用.【解題分析】

(1)設1輛大貨車和1輛小貨車一次可以分別運貨噸和噸,根據“3輛大貨車與4輛小貨車一次可以運貨18噸、2輛大貨車與6輛小貨車一次可以運貨17噸”列方程組求解可得;(2)因運輸33噸且用10輛車一次運完,故10輛車所運貨不低于10噸,所以列不等式,大貨車運費高于小貨車,故用大貨車少費用就小進行安排即可.【題目詳解】(1)解:設1輛大貨車一次可以運貨x噸,1輛小貨車一次可以運貨y噸,依題可得:

,

解得:.

答:1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸.

(2)解:設大貨車有m輛,則小貨車10-m輛,依題可得:

4m+(10-m)≥33

m≥0

10-m≥0

解得:≤m≤10,

∴m=8,9,10;

∴當大貨車8輛時,則小貨車2輛;

當大貨車9輛時,則小貨車1輛;

當大貨車10輛時,則小貨車0輛;

設運費為W=130m+100(10-m)=30m+1000,

∵k=30〉0,

∴W隨x的增大而增大,

∴當m=8時,運費最少,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論