版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省廣州市番禹區(qū)市級名校2024屆中考數學押題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,是的直徑,弦,垂足為點,點是上的任意一點,延長交的延長線于點,連接.若,則等于()A. B. C. D.2.根據中國鐵路總公司3月13日披露,2018年鐵路春運自2月1日起至3月12日止,為期40天全國鐵路累計發(fā)送旅客3.82億人次.3.82億用科學記數法可以表示為()A.3.82×107 B.3.82×108 C.3.82×109 D.0.382×10103.a的倒數是3,則a的值是()A. B.﹣ C.3 D.﹣34.如圖,已知函數y=﹣與函數y=ax2+bx的交點P的縱坐標為1,則不等式ax2+bx+>0的解集是()A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>05.如圖,CD是⊙O的弦,O是圓心,把⊙O的劣弧沿著CD對折,A是對折后劣弧上的一點,∠CAD=100°,則∠B的度數是()A.100° B.80° C.60° D.50°6.下列代數運算正確的是()A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3?x2=x57.如圖,△ABC是⊙O的內接三角形,AD⊥BC于D點,且AC=5,CD=3,BD=4,則⊙O的直徑等于()A.52 B.32 C.58.已知:如圖,點P是正方形ABCD的對角線AC上的一個動點(A、C除外),作PE⊥AB于點E,作PF⊥BC于點F,設正方形ABCD的邊長為x,矩形PEBF的周長為y,在下列圖象中,大致表示y與x之間的函數關系的是()A. B. C. D.9.如圖,正方形ABCD的邊長為4,點M是CD的中點,動點E從點B出發(fā),沿BC運動,到點C時停止運動,速度為每秒1個長度單位;動點F從點M出發(fā),沿M→D→A遠動,速度也為每秒1個長度單位:動點G從點D出發(fā),沿DA運動,速度為每秒2個長度單位,到點A后沿AD返回,返回時速度為每秒1個長度單位,三個點的運動同時開始,同時結束.設點E的運動時間為x,△EFG的面積為y,下列能表示y與x的函數關系的圖象是()A. B.C. D.10.已知拋物線y=x2+3向左平移2個單位,那么平移后的拋物線表達式是()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=x2+1D.y=x2+5二、填空題(共7小題,每小題3分,滿分21分)11.不透明袋子中裝有5個紅色球和3個藍色球,這些球除了顏色外沒有其他差別.從袋子中隨機摸出一個球,摸出藍色球的概率為_______.12.如圖,在矩形ABCD中,E、F分別是AD、CD的中點,沿著BE將△ABE折疊,點A剛好落在BF上,若AB=2,則AD=________.13.如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數y=在第一象限的圖象經過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為_______.14.如圖,圓錐的表面展開圖由一扇形和一個圓組成,已知圓的面積為100π,扇形的圓心角為120°,這個扇形的面積為.15.25位同學10秒鐘跳繩的成績匯總如下表:人數1234510次么跳繩次數的中位數是_____________.16.圖1、圖2的位置如圖所示,如果將兩圖進行拼接(無覆蓋),可以得到一個矩形,請利用學過的變換(翻折、旋轉、軸對稱)知識,將圖2進行移動,寫出一種拼接成矩形的過程______.17.現有三張分別標有數字2、3、4的卡片,它們除了數字外完全相同,把卡片背面朝上洗勻,從中任意抽取一張,將上面的數字記為a(不放回);從剩下的卡片中再任意抽取一張,將上面的數字記為b,則點(a,b)在直線圖象上的概率為__.三、解答題(共7小題,滿分69分)18.(10分)某學校要開展校園文化藝術節(jié)活動,為了合理編排節(jié)目,對學生最喜愛的歌曲、舞蹈、小品、相聲四類節(jié)目進行了一次隨機抽樣調查(每名學生必須選擇且只能選擇一類),并將調查結果繪制成如下不完整的統(tǒng)計圖.請你根據圖中信息,回答下列問題:(1)求本次調查的學生人數,并補全條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,求“歌曲”所在扇形的圓心角的度數;(3)九年一班和九年二班各有2名學生擅長舞蹈,學校準備從這4名學生中隨機抽取2名學生參加舞蹈節(jié)目的編排,那么抽取的2名學生恰好來自同一個班級的概率是多少?19.(5分)某中學開展“漢字聽寫大賽”活動,為了解學生的參與情況,在該校隨機抽取了四個班級學生進行調查,將收集的數據整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖,請根據圖中的信息,解答下列問題:(1)這四個班參與大賽的學生共__________人;(2)請你補全兩幅統(tǒng)計圖;(3)求圖1中甲班所對應的扇形圓心角的度數;(4)若四個班級的學生總數是160人,全校共2000人,請你估計全校的學生中參與這次活動的大約有多少人.20.(8分)如圖,在△ABC中,ABAC,AE是∠BAC的平分線,∠ABC的平分線BM交AE于點M,點O在AB上,以點O為圓心,OB的長為半徑的圓經過點M,交BC于點G,交AB于點F.(1)求證:AE為⊙O的切線;(2)當BC=4,AC=6時,求⊙O的半徑;(3)在(2)的條件下,求線段BG的長.21.(10分)圖1是一商場的推拉門,已知門的寬度米,且兩扇門的大小相同(即),將左邊的門繞門軸向里面旋轉,將右邊的門繞門軸向外面旋轉,其示意圖如圖2,求此時與之間的距離(結果保留一位小數).(參考數據:,,)22.(10分)某商場經營某種品牌的童裝,購進時的單價是60元.根據市場調查,在一段時間內,銷售單價是80元時,銷售量是200件,而銷售單價每降低1元,就可多售出20件.寫出銷售量y件與銷售單價x元之間的函數關系式;寫出銷售該品牌童裝獲得的利潤w元與銷售單價x元之間的函數關系式;若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務,則商場銷售該品牌童裝獲得的最大利潤是多少?23.(12分)已知:如圖,在半徑為2的扇形中,°,點C在半徑OB上,AC的垂直平分線交OA于點D,交弧AB于點E,聯結.(1)若C是半徑OB中點,求的正弦值;(2)若E是弧AB的中點,求證:;(3)聯結CE,當△DCE是以CD為腰的等腰三角形時,求CD的長.24.(14分)閱讀下面材料,并解答問題.材料:將分式拆分成一個整式與一個分式(分子為整數)的和的形式.解:由分母為﹣x2+1,可設﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵對應任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+這樣,分式被拆分成了一個整式x2+2與一個分式的和.解答:將分式拆分成一個整式與一個分式(分子為整數)的和的形式.試說明的最小值為1.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】
連接BD,利用直徑得出∠ABD=65°,進而利用圓周角定理解答即可.【題目詳解】連接BD,∵AB是直徑,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故選B.【題目點撥】此題考查圓周角定理,關鍵是利用直徑得出∠ABD=65°.2、B【解題分析】
根據題目中的數據可以用科學記數法表示出來,本題得以解決.【題目詳解】解:3.82億=3.82×108,故選B.【題目點撥】本題考查科學記數法-表示較大的數,解答本題的關鍵是明確科學記數法的表示方法.3、A【解題分析】
根據倒數的定義進行解答即可.【題目詳解】∵a的倒數是3,∴3a=1,解得:a=.故選A.【題目點撥】本題考查的是倒數的定義,即乘積為1的兩個數叫互為倒數.4、C【解題分析】
首先求出P點坐標,進而利用函數圖象得出不等式ax2+bx+>1的解集.【題目詳解】∵函數y=﹣與函數y=ax2+bx的交點P的縱坐標為1,∴1=﹣,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+>1的解集是:x<﹣3或x>1.故選C.【題目點撥】本題考查了反比例函數圖象上點的坐標特征,解題的關鍵是正確得出P點坐標.5、B【解題分析】試題分析:如圖,翻折△ACD,點A落在A′處,可知∠A=∠A′=100°,然后由圓內接四邊形可知∠A′+∠B=180°,解得∠B=80°.故選:B6、D【解題分析】
分別根據同底數冪的乘法、冪的乘方與積的乘方、完全平方公式進行逐一計算即可.【題目詳解】解:A.(x+1)2=x2+2x+1,故A錯誤;B.(x3)2=x6,故B錯誤;C.(2x)2=4x2,故C錯誤.D.x3?x2=x5,故D正確.故本題選D.【題目點撥】本題考查的是同底數冪的乘法、冪的乘方與積的乘方、完全平方公式,熟練掌握他們的定義是解題的關鍵.7、A【解題分析】
連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=AC2-DC2=52-【題目詳解】解:如圖,連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D點,AC=5,DC=3,∴∠ADC=90°,∴AD=AC∴AB=在Rt△ABE與Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴ABAD即2R=AB?ACAD=4∴⊙O的直徑等于52故答案選:A.【題目點撥】本題主要考查了圓周角定理、勾股定理,解題的關鍵是掌握輔助線的作法.8、A【解題分析】由題意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周長等于2個正方形的邊長.則y=2x,為正比例函數.故選A.9、A【解題分析】
當點F在MD上運動時,0≤x<2;當點F在DA上運動時,2<x≤4.再按相關圖形面積公式列出表達式即可.【題目詳解】解:當點F在MD上運動時,0≤x<2,則:y=S梯形ECDG-S△EFC-S△GDF=,當點F在DA上運動時,2<x≤4,則:y=,綜上,只有A選項圖形符合題意,故選擇A.【題目點撥】本題考查了動點問題的函數圖像,抓住動點運動的特點是解題關鍵.10、A【解題分析】
結合向左平移的法則,即可得到答案.【題目詳解】解:將拋物線y=x2+3向左平移2個單位可得y=(x+2)2+3,故選A.【題目點撥】此類題目主要考查二次函數圖象的平移規(guī)律,解題的關鍵是要搞清已知函數解析式確定平移后的函數解析式,還是已知平移后的解析式求原函數解析式,然后根據圖象平移規(guī)律“左加右減、上加下減“進行解答.二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】分析:根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值即其發(fā)生的概率.詳解:由于共有8個球,其中籃球有5個,則從袋子中摸出一個球,摸出藍球的概率是,故答案是.點睛:此題主要考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.12、【解題分析】如圖,連接EF,∵點E、點F是AD、DC的中點,∴AE=ED,CF=DF=CD=AB=1,由折疊的性質可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,,∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt△BCF中,BC=.∴AD=BC=2.點睛:本題考查了翻折變換的知識,解答本題的關鍵是連接EF,證明Rt△EA′F≌Rt△EDF,得出BF的長,再利用勾股定理解答即可.13、【解題分析】
設△OAC和△BAD的直角邊長分別為a、b,結合等腰直角三角形的性質及圖像可得出B的坐標,根據三角形的面積公式結合反比例函數系數k的幾何意義即可求解.【題目詳解】設△OAC和△BAD的直角邊長分別為a、b,則B點坐標為(a+b,a-b)∵點B在反比例函數y=在第一象限的圖象上,∴(a+b)(a-b)=a2-b2=3∴S△OAC﹣S△BAD=a2-b2=【題目點撥】此題主要考查等腰直角三角形的面積求法和反比例函數k值的定義,解題的關鍵是熟知等腰直角三角形的性質及反比例函數k值的性質.14、300π【解題分析】試題分析:首先根據底面圓的面積求得底面的半徑,然后結合弧長公式求得扇形的半徑,然后利用扇形的面積公式求得側面積即可.∵底面圓的面積為100π,∴底面圓的半徑為10,∴扇形的弧長等于圓的周長為20π,設扇形的母線長為r,則=20π,解得:母線長為30,∴扇形的面積為πrl=π×10×30=300π考點:(1)、圓錐的計算;(2)、扇形面積的計算15、20【解題分析】分析:根據中位數的定義進行計算即可得到這組數據的中位數.詳解:由中位數的定義可知,這次跳繩次數的中位數是將這25位同學的跳繩次數按從小到大排列后的第12個和13個數據的平均數,∵由表格中的數據分析可知,這組數據按從小到大排列后的第12個和第13個數據都是20,∴這組跳繩次數的中位數是20.故答案為:20.點睛:本題考查的是怎樣確定一組數據的中位數,解題的關鍵是弄清“中位數”的定義:“把一組數據按從小到大的順序排列后,若數據組中共有奇數個數據,則最中間一個數據是該組數據的中位數;若數據組中數據的個數為偶數個,則最中間兩個數據的平均數是這組數據的中位數”.16、先將圖2以點A為旋轉中心逆時針旋轉,再將旋轉后的圖形向左平移5個單位.【解題分析】
變換圖形2,可先旋轉,然后平移與圖2拼成一個矩形.【題目詳解】先將圖2以點A為旋轉中心逆時針旋轉90°,再將旋轉后的圖形向左平移5個單位可以與圖1拼成一個矩形.故答案為:先將圖2以點A為旋轉中心逆時針旋轉90°,再將旋轉后的圖形向左平移5個單位.【題目點撥】本題考查了平移和旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.17、【解題分析】
根據題意列出圖表,即可表示(a,b)所有可能出現的結果,根據一次函數的性質求出在圖象上的點,即可得出答案.【題目詳解】畫樹狀圖得:
∵共有6種等可能的結果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直線圖象上的只有(3,2),
∴點(a,b)在圖象上的概率為.【題目點撥】本題考查了用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意此題屬于不放回實驗.三、解答題(共7小題,滿分69分)18、(1)共調查了50名學生;統(tǒng)計圖見解析;(2)72°;(3)13【解題分析】
(1)用最喜愛相聲類的人數除以它所占的百分比即可得到調查的總人數,先計算出最喜歡舞蹈類的人數,然后補全條形統(tǒng)計圖;(2)用360°乘以最喜愛歌曲類人數所占的百分比得到“歌曲”所在扇形的圓心角的度數;
(3)畫樹狀圖展示所有12種等可能的結果數,再找出抽取的2名學生恰好來自同一個班級的結果數,然后根據概率公式求解.【題目詳解】解:(1)14÷28%=50,∴本次共調查了50名學生.補全條形統(tǒng)計圖如下.(2)在扇形統(tǒng)計圖中,“歌曲”所在扇形的圓心角的度數為360°×1050(3)設一班2名學生為數字“1”,“1”,二班2名學生為數字“2”,“2”,畫樹狀圖如下.共有12種等可能的結果,其中抽取的2名學生恰好來自同一個班級的結果有4種,∴抽取的2名學生恰好來自同一個班級的概率P=412=1【題目點撥】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.也考查了統(tǒng)計圖.19、(1)100;(2)見解析;(3)108°;(4)1250.【解題分析】試題分析:(1)根據乙班參賽30人,所占比為20%,即可求出這四個班總人數;(2)根據丁班參賽35人,總人數是100,即可求出丁班所占的百分比,再用整體1減去其它所占的百分比,即可得出丙所占的百分比,再乘以參賽得總人數,即可得出丙班參賽得人數,從而補全統(tǒng)計圖;(3)根據甲班級所占的百分比,再乘以360°,即可得出答案;(4)根據樣本估計總體,可得答案.試題解析:(1)這四個班參與大賽的學生數是:30÷30%=100(人);故答案為100;(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,則丙班得人數是:100×15%=15(人);如圖:(3)甲班級所對應的扇形圓心角的度數是:30%×360°=108°;(4)根據題意得:2000×=1250(人).答:全校的學生中參與這次活動的大約有1250人.考點:條形統(tǒng)計圖;扇形統(tǒng)計圖;樣本估計總體.20、(1)證明見解析;(2);(3)1.【解題分析】
(1)連接OM,如圖1,先證明OM∥BC,再根據等腰三角形的性質判斷AE⊥BC,則OM⊥AE,然后根據切線的判定定理得到AE為⊙O的切線;(2)設⊙O的半徑為r,利用等腰三角形的性質得到BE=CE=BC=2,再證明△AOM∽△ABE,則利用相似比得到,然后解關于r的方程即可;(3)作OH⊥BE于H,如圖,易得四邊形OHEM為矩形,則HE=OM=,所以BH=BE-HE=,再根據垂徑定理得到BH=HG=,所以BG=1.【題目詳解】解:(1)證明:連接OM,如圖1,∵BM是∠ABC的平分線,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分線,∴AE⊥BC,∴OM⊥AE,∴AE為⊙O的切線;(2)解:設⊙O的半徑為r,∵AB=AC=6,AE是∠BAC的平分線,∴BE=CE=BC=2,∵OM∥BE,∴△AOM∽△ABE,∴,即,解得r=,即設⊙O的半徑為;(3)解:作OH⊥BE于H,如圖,∵OM⊥EM,ME⊥BE,∴四邊形OHEM為矩形,∴HE=OM=,∴BH=BE﹣HE=2﹣=,∵OH⊥BG,∴BH=HG=,∴BG=2BH=1.21、1.4米.【解題分析】
過點B作BE⊥AD于點E,過點C作CF⊥AD于點F,延長FC到點M,使得BE=CM,則EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的長度,進而可得出EF的長度,再在Rt△MEF中利用勾股定理即可求出EM的長,此題得解.【題目詳解】過點B作BE⊥AD于點E,過點C作CF⊥AD于點F,延長FC到點M,使得BE=CM,如圖所示,∵AB=CD,AB+CD=AD=2,∴AB=CD=1,在Rt△ABE中,AB=1,∠A=37°,∴BE=AB?sin∠A≈0.6,AE=AB?cos∠A≈0.8,在Rt△CDF中,CD=1,∠D=45°,∴CF=CD?sin∠D≈0.7,DF=CD?cos∠D≈0.7,∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四邊形BEMC為平行四邊形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=≈1.4,∴B與C之間的距離約為1.4米.【題目點撥】本題考查了解直角三角形的應用、勾股定理以及平行四邊形的判定與性質,正確添加輔助線,構造直角三角形,利用勾股定理求出BC的長度是解題的關鍵.22、(1);(2);(3)最多獲利4480元.【解題分析】
(1)銷售量y為200件加增加的件數(80﹣x)×20;(2)利潤w等于單件利潤×銷售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函數的性質得到w=﹣20x2+3000x﹣108000的對稱軸為x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根據二次函數的性質得到當76≤x≤78時,W隨x的增大而減小,把x=76代入計算即可得到商場銷售該品牌童裝獲得的最大利潤.【題目詳解】(1)根據題意得,y=200+(80﹣x)×20=﹣20x+1800,所以銷售量y件與銷售單價x元之間的函數關系式為y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以銷售該品牌童裝獲得的利潤w元與銷售單價x元之間的函數關系式為:W=﹣20x2+3000x﹣108000;(3)根據題意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x2+3000x﹣108000,對稱軸為x=﹣=75,∵a=﹣20<0,∴拋物線開口向下,∴當76≤x≤78時,W隨x的增大而減小,∴x=76時,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商場銷售該品牌童裝獲得的最大利潤是4480元.【題目點撥】二次函數的應用.23、(2);(2)詳見解析;(2)當是以CD為腰的等腰三角形時,CD的長為2或.【解題分析】
(2)先求出OCOB=2,設OD=x,得出CD=AD=OA﹣OD=2﹣x,根據勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出結論;(2)先判斷出,進而得出∠CBE=∠BCE,再判斷出△OBE∽△EBC,即可得出結論;(3)分兩種情況:①當CD=CE時,判斷出四邊形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專項鉆孔灌注樁施工合作協(xié)議2024版A版
- 2024年04月福建華夏銀行廈門分行支行行長等崗位招考筆試歷年參考題庫附帶答案詳解
- 2024綜合采購戰(zhàn)略合作協(xié)議示范文本版
- 2025年度醫(yī)療設備試用及臨床研究合作協(xié)議4篇
- 2025年不自愿離婚協(xié)議范本:房產分割與子女撫養(yǎng)權爭議解決方案3篇
- 2025年度創(chuàng)新創(chuàng)業(yè)基地入駐項目合作協(xié)議3篇
- 2024試用期勞動合同(含績效考核標準)3篇
- 2025年度電子產品維修配件銷售代理協(xié)議(含售后保障服務)4篇
- 2025年高新技術產業(yè)園區(qū)廠房租賃合同協(xié)議2篇
- 2025年度茶葉深加工研發(fā)合作合同范本4篇
- 細胞庫建設與標準制定-洞察分析
- 2024年國家公務員錄用考試公共基礎知識復習題庫2500題及答案
- DB3309T 98-2023 登步黃金瓜生產技術規(guī)程
- 2024年萍鄉(xiāng)衛(wèi)生職業(yè)學院單招職業(yè)技能測試題庫標準卷
- DBJ41-T 108-2011 鋼絲網架水泥膨脹珍珠巖夾芯板隔墻應用技術規(guī)程
- 2025年學長引領的讀書會定期活動合同
- 表內乘除法口算l練習題1200道a4打印
- 《EICC培訓講義》課件
- 2025年四川省政府直屬事業(yè)單位招聘管理單位筆試遴選500模擬題附帶答案詳解
- 2024年物業(yè)公司服務質量保證合同條款
- 文言文閱讀之理解實詞含義(講義)-2025年中考語文專項復習
評論
0/150
提交評論