




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆河北省唐山市古治區(qū)中考數(shù)學(xué)考試模擬沖刺卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,直線y=34x+3交x軸于A點(diǎn),將一塊等腰直角三角形紙板的直角頂點(diǎn)置于原點(diǎn)O,另兩個(gè)頂點(diǎn)M、N恰落在直線y=3A.17 B.16 C.12.函數(shù)在同一直角坐標(biāo)系內(nèi)的圖象大致是()A. B. C. D.3.如圖,甲圓柱型容器的底面積為30cm2,高為8cm,乙圓柱型容器底面積為xcm2,若將甲容器裝滿水,然后再將甲容器里的水全部倒入乙容器中(乙容器無(wú)水溢出),則乙容器水面高度y(cm)與x(cm2)之間的大致圖象是()A. B. C. D.4.等式組的解集在下列數(shù)軸上表示正確的是(
).A.
B.C.
D.5.計(jì)算:得()A.- B.- C.- D.6.(2011貴州安順,4,3分)我市某一周的最高氣溫統(tǒng)計(jì)如下表:最高氣溫(℃)
25
26
27
28
天數(shù)
1
1
2
3
則這組數(shù)據(jù)的中位數(shù)與眾數(shù)分別是()A.27,28 B.27.5,28 C.28,27 D.26.5,277.如圖所示的四邊形,與選項(xiàng)中的一個(gè)四邊形相似,這個(gè)四邊形是()A. B. C. D.8.一個(gè)多邊形的邊數(shù)由原來(lái)的3增加到n時(shí)(n>3,且n為正整數(shù)),它的外角和()A.增加(n﹣2)×180° B.減?。╪﹣2)×180°C.增加(n﹣1)×180° D.沒(méi)有改變9.如圖,矩形ABCD內(nèi)接于⊙O,點(diǎn)P是上一點(diǎn),連接PB、PC,若AD=2AB,則cos∠BPC的值為()A. B. C. D.10.如圖,△ABC在邊長(zhǎng)為1個(gè)單位的方格紙中,它的頂點(diǎn)在小正方形的頂點(diǎn)位置.如果△ABC的面積為10,且sinA=,那么點(diǎn)C的位置可以在()A.點(diǎn)C1處 B.點(diǎn)C2處 C.點(diǎn)C3處 D.點(diǎn)C4處二、填空題(共7小題,每小題3分,滿分21分)11.分式方程+=1的解為_(kāi)_______.12.如圖所示,在平面直角坐標(biāo)系中,已知反比例函數(shù)y=(x>0)的圖象和菱形OABC,且OB=4,tan∠BOC=,若將菱形向右平移,菱形的兩個(gè)頂點(diǎn)B、C恰好同時(shí)落在反比例函數(shù)的圖象上,則反比例函數(shù)的解析式是______________.13.將一副直角三角板如圖放置,使含30°角的三角板的直角邊和含45°角的三角板一條直角邊在同一條直線上,則∠1的度數(shù)為_(kāi)_________14.如圖所示,直線y=x+b交x軸A點(diǎn),交y軸于B點(diǎn),交雙曲線于P點(diǎn),連OP,則OP2﹣OA2=__.15.在△ABC中,若∠A,∠B滿足|cosA-|+(sinB-)2=0,則∠C=_________.16.已知一個(gè)菱形的邊長(zhǎng)為5,其中一條對(duì)角線長(zhǎng)為8,則這個(gè)菱形的面積為_(kāi)____.17.⊙O的半徑為10cm,AB,CD是⊙O的兩條弦,且AB∥CD,AB=16cm,CD=12cm.則AB與CD之間的距離是cm.三、解答題(共7小題,滿分69分)18.(10分)如圖,在?ABCD中,過(guò)點(diǎn)A作AE⊥BC于點(diǎn)E,AF⊥DC于點(diǎn)F,AE=AF.(1)求證:四邊形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF的長(zhǎng).19.(5分)如圖,⊙O是△ABC的外接圓,點(diǎn)O在BC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD、CD,過(guò)點(diǎn)D作BC的平行線與AC的延長(zhǎng)線相交于點(diǎn)P.求證:PD是⊙O的切線;求證:△ABD∽△DCP;當(dāng)AB=5cm,AC=12cm時(shí),求線段PC的長(zhǎng).20.(8分)如圖①,在正方形ABCD中,△AEF的頂點(diǎn)E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長(zhǎng)相等,求∠EAF的度數(shù).如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點(diǎn)M,N是BD邊上的任意兩點(diǎn),且∠MAN=45°,將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADH位置,連接NH,試判斷MN2,ND2,DH2之間的數(shù)量關(guān)系,并說(shuō)明理由.在圖①中,若EG=4,GF=6,求正方形ABCD的邊長(zhǎng).21.(10分)(1)計(jì)算:;(2)解不等式組:22.(10分)已知:如圖所示,拋物線y=﹣x2+bx+c與x軸的兩個(gè)交點(diǎn)分別為A(1,0),B(3,0)(1)求拋物線的表達(dá)式;(2)設(shè)點(diǎn)P在該拋物線上滑動(dòng),且滿足條件S△PAB=1的點(diǎn)P有幾個(gè)?并求出所有點(diǎn)P的坐標(biāo).23.(12分)定義:若四邊形中某個(gè)頂點(diǎn)與其它三個(gè)頂點(diǎn)的距離相等,則這個(gè)四邊形叫做等距四邊形,這個(gè)頂點(diǎn)叫做這個(gè)四邊形的等距點(diǎn).(1)判斷:一個(gè)內(nèi)角為120°的菱形等距四邊形.(填“是”或“不是”)(2)如圖2,在5×5的網(wǎng)格圖中有A、B兩點(diǎn),請(qǐng)?jiān)诖痤}卷給出的兩個(gè)網(wǎng)格圖上各找出C、D兩個(gè)格點(diǎn),使得以A、B、C、D為頂點(diǎn)的四邊形為互不全等的“等距四邊形”,畫(huà)出相應(yīng)的“等距四邊形”,并寫(xiě)出該等距四邊形的端點(diǎn)均為非等距點(diǎn)的對(duì)角線長(zhǎng).端點(diǎn)均為非等距點(diǎn)的對(duì)角線長(zhǎng)為端點(diǎn)均為非等距點(diǎn)的對(duì)角線長(zhǎng)為(3)如圖1,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連結(jié)AD,AC,BC,若四邊形ABCD是以A為等距點(diǎn)的等距四邊形,求∠BCD的度數(shù).24.(14分)如圖,拋物線與x軸交于A,B,與y軸交于點(diǎn)C(0,2),直線經(jīng)過(guò)點(diǎn)A,C.(1)求拋物線的解析式;(2)點(diǎn)P為直線AC上方拋物線上一動(dòng)點(diǎn);①連接PO,交AC于點(diǎn)E,求的最大值;②過(guò)點(diǎn)P作PF⊥AC,垂足為點(diǎn)F,連接PC,是否存在點(diǎn)P,使△PFC中的一個(gè)角等于∠CAB的2倍?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解題分析】
過(guò)O作OC⊥AB于C,過(guò)N作ND⊥OA于D,設(shè)N的坐標(biāo)是(x,34x+3),得出DN=34x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面積公式得出AO×OB=AB×OC,代入求出OC,根據(jù)sin45°=OCON,求出ON,在Rt△NDO中,由勾股定理得出(34x+3)2+(-x)2=(122【題目詳解】過(guò)O作OC⊥AB于C,過(guò)N作ND⊥OA于D,∵N在直線y=34∴設(shè)N的坐標(biāo)是(x,34則DN=34y=34當(dāng)x=0時(shí),y=3,當(dāng)y=0時(shí),x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面積公式得:AO×OB=AB×OC,∴3×4=5OC,OC=125∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=OCON∴ON=122在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(34x+3)2+(-x)2=(1225解得:x1=-8425,x2=12∵N在第二象限,∴x只能是-842534x+3=12即ND=1225,OD=84tan∠AON=NDOD故選A.【題目點(diǎn)撥】本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,勾股定理,三角形的面積,解直角三角形等知識(shí)點(diǎn)的運(yùn)用,主要考查學(xué)生運(yùn)用這些性質(zhì)進(jìn)行計(jì)算的能力,題目比較典型,綜合性比較強(qiáng).2、C【解題分析】
根據(jù)a、b的符號(hào),針對(duì)二次函數(shù)、一次函數(shù)的圖象位置,開(kāi)口方向,分類討論,逐一排除.【題目詳解】當(dāng)a>0時(shí),二次函數(shù)的圖象開(kāi)口向上,一次函數(shù)的圖象經(jīng)過(guò)一、三或一、二、三或一、三、四象限,故A、D不正確;由B、C中二次函數(shù)的圖象可知,對(duì)稱軸x=->0,且a>0,則b<0,但B中,一次函數(shù)a>0,b>0,排除B.故選C.3、C【解題分析】
根據(jù)題意可以寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式,然后令x=40求出相應(yīng)的y值,即可解答本題.【題目詳解】解:由題意可得,y==,當(dāng)x=40時(shí),y=6,故選C.【題目點(diǎn)撥】本題考查了反比例函數(shù)的圖象,根據(jù)題意列出函數(shù)解析式是解決此題的關(guān)鍵.4、B【解題分析】【分析】分別求出每一個(gè)不等式的解集,然后在數(shù)軸上表示出每個(gè)不等式的解集,對(duì)比即可得.【題目詳解】,解不等式①得,x>-3,解不等式②得,x≤2,在數(shù)軸上表示①、②的解集如圖所示,故選B.【題目點(diǎn)撥】本題考查了解一元一次不等式組,在數(shù)軸上表示不等式的解集,不等式的解集在數(shù)軸上表示的方法:把每個(gè)不等式的解集在數(shù)軸上表示出來(lái)(>,≥向右畫(huà);<,≤向左畫(huà)),數(shù)軸上的點(diǎn)把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個(gè)數(shù)一樣,那么這段就是不等式組的解集.有幾個(gè)就要幾個(gè).在表示解集時(shí)“≥”,“≤”要用實(shí)心圓點(diǎn)表示;“<”,“>”要用空心圓點(diǎn)表示.5、B【解題分析】
同級(jí)運(yùn)算從左向右依次計(jì)算,計(jì)算過(guò)程中注意正負(fù)符號(hào)的變化.【題目詳解】-故選B.【題目點(diǎn)撥】本題考查的是有理數(shù)的混合運(yùn)算,熟練掌握運(yùn)算法則是解題的關(guān)鍵.6、A【解題分析】根據(jù)表格可知:數(shù)據(jù)25出現(xiàn)1次,26出現(xiàn)1次,27出現(xiàn)2次,28出現(xiàn)3次,∴眾數(shù)是28,這組數(shù)據(jù)從小到大排列為:25,26,27,27,28,28,28∴中位數(shù)是27∴這周最高氣溫的中位數(shù)與眾數(shù)分別是27,28故選A.7、D【解題分析】
根據(jù)勾股定理求出四邊形第四條邊的長(zhǎng)度,進(jìn)而求出四邊形四條邊之比,根據(jù)相似多邊形的性質(zhì)判斷即可.【題目詳解】解:作AE⊥BC于E,則四邊形AECD為矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四邊形ABCD的四條邊之比為1:3:5:5,D選項(xiàng)中,四條邊之比為1:3:5:5,且對(duì)應(yīng)角相等,故選D.【題目點(diǎn)撥】本題考查的是相似多邊形的判定和性質(zhì),掌握相似多邊形的對(duì)應(yīng)邊的比相等是解題的關(guān)鍵.8、D【解題分析】
根據(jù)多邊形的外角和等于360°,與邊數(shù)無(wú)關(guān)即可解答.【題目詳解】∵多邊形的外角和等于360°,與邊數(shù)無(wú)關(guān),∴一個(gè)多邊形的邊數(shù)由3增加到n時(shí),其外角度數(shù)的和還是360°,保持不變.故選D.【題目點(diǎn)撥】本題考查了多邊形的外角和,熟知多邊形的外角和等于360°是解題的關(guān)鍵.9、A【解題分析】
連接BD,根據(jù)圓周角定理可得cos∠BDC=cos∠BPC,又BD為直徑,則∠BCD=90°,設(shè)DC為x,則BC為2x,根據(jù)勾股定理可得BD=x,再根據(jù)cos∠BDC===,即可得出結(jié)論.【題目詳解】連接BD,∵四邊形ABCD為矩形,∴BD過(guò)圓心O,∵∠BDC=∠BPC(圓周角定理)∴cos∠BDC=cos∠BPC∵BD為直徑,∴∠BCD=90°,∵=,∴設(shè)DC為x,則BC為2x,∴BD===x,∴cos∠BDC===,∵cos∠BDC=cos∠BPC,∴cos∠BPC=.故答案選A.【題目點(diǎn)撥】本題考查了圓周角定理與勾股定理,解題的關(guān)鍵是熟練的掌握?qǐng)A周角定理與勾股定理的應(yīng)用.10、D【解題分析】如圖:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案為D.二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】
根據(jù)解分式方程的步驟,即可解答.【題目詳解】方程兩邊都乘以,得:,解得:,檢驗(yàn):當(dāng)時(shí),,所以分式方程的解為,故答案為.【題目點(diǎn)撥】考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解解分式方程一定注意要驗(yàn)根.12、【解題分析】解:連接AC,交y軸于D.∵四邊形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD.∵OB=4,tan∠BOC=,∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2).設(shè)菱形平移后B的坐標(biāo)是(x,4),C的坐標(biāo)是(1+x,2).∵B、C落在反比例函數(shù)的圖象上,∴k=4x=2(1+x),解得:x=1,即菱形平移后B的坐標(biāo)是(1,4),代入反比例函數(shù)的解析式得:k=1×4=4,即B、C落在反比例函數(shù)的圖象上,菱形的平移距離是1,反比例函數(shù)的解析式是y=.故答案為y=.點(diǎn)睛:本題考查了菱形的性質(zhì),用待定系數(shù)法求反比例函數(shù)的解析式,平移的性質(zhì)的應(yīng)用,主要考查學(xué)生的計(jì)算能力.13、75°【解題分析】
先根據(jù)同旁內(nèi)角互補(bǔ),兩直線平行得出AC∥DF,再根據(jù)兩直線平行內(nèi)錯(cuò)角相等得出∠2=∠A=45°,然后根據(jù)三角形內(nèi)角與外角的關(guān)系可得∠1的度數(shù).【題目詳解】∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC∥DF,∴∠2=∠A=45°,∴∠1=∠2+∠D=45°+30°=75°.故答案為:75°.【題目點(diǎn)撥】本題考查了平行線的判定與性質(zhì),三角形外角的性質(zhì),求出∠2=∠A=45°是解題的關(guān)鍵.14、1【解題分析】解:∵直線y=x+b與雙曲線(x>0)交于點(diǎn)P,設(shè)P點(diǎn)的坐標(biāo)(x,y),∴x﹣y=﹣b,xy=8,而直線y=x+b與x軸交于A點(diǎn),∴OA=b.又∵OP2=x2+y2,OA2=b2,∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.故答案為1.15、75°【解題分析】【分析】根據(jù)絕對(duì)值及偶次方的非負(fù)性,可得出cosA及sinB的值,從而得出∠A及∠B的度數(shù),利用三角形的內(nèi)角和定理可得出∠C的度數(shù).【題目詳解】∵|cosA-|+(sinB-)2=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案為:75°.【題目點(diǎn)撥】本題考查了特殊角的三角函數(shù)值及非負(fù)數(shù)的性質(zhì),解答本題的關(guān)鍵是得出cosA及sinB的值,另外要求我們熟練掌握一些特殊角的三角函數(shù)值.16、1【解題分析】試題解析:如圖,∵菱形ABCD中,BD=8,AB=5,∴AC⊥BD,OB=BD=4,∴OA==3,∴AC=2OA=6,∴這個(gè)菱形的面積為:AC?BD=×6×8=1.17、2或14【解題分析】
分兩種情況進(jìn)行討論:①弦AB和CD在圓心同側(cè);②弦AB和CD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理求解即可.【題目詳解】①當(dāng)弦AB和CD在圓心同側(cè)時(shí),如圖,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF?OE=2cm;②當(dāng)弦AB和CD在圓心異側(cè)時(shí),如圖,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB與CD之間的距離為14cm或2cm.故答案為:2或14.三、解答題(共7小題,滿分69分)18、(1)見(jiàn)解析;(2)2【解題分析】
(1)方法一:連接AC,利用角平分線判定定理,證明DA=DC即可;方法二:只要證明△AEB≌△AFD.可得AB=AD即可解決問(wèn)題;(2)在Rt△ACF,根據(jù)AF=CF·tan∠ACF計(jì)算即可.【題目詳解】(1)證法一:連接AC,如圖.∵AE⊥BC,AF⊥DC,AE=AF,∴∠ACF=∠ACE,∵四邊形ABCD是平行四邊形,∴AD∥BC.∴∠DAC=∠ACB.∴∠DAC=∠DCA,∴DA=DC,∴四邊形ABCD是菱形.證法二:如圖,∵四邊形ABCD是平行四邊形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵AE=AF,∴△AEB≌△AFD.∴AB=AD,∴四邊形ABCD是菱形.(2)連接AC,如圖.∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°,∵四邊形ABCD是菱形,∴∠ACF=60°,在Rt△CFA中,AF=CF?tan∠ACF=2.【題目點(diǎn)撥】本題主要考查三角形的性質(zhì)及三角函數(shù)的相關(guān)知識(shí),充分利用已知條件靈活運(yùn)用各種方法求解可得到答案。19、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)CP=16.9cm.【解題分析】【分析】(1)先判斷出∠BAC=2∠BAD,進(jìn)而判斷出∠BOD=∠BAC=90°,得出PD⊥OD即可得出結(jié)論;(2)先判斷出∠ADB=∠P,再判斷出∠DCP=∠ABD,即可得出結(jié)論;(3)先求出BC,再判斷出BD=CD,利用勾股定理求出BC=BD=,最后用△ABD∽△DCP得出比例式求解即可得出結(jié)論.【題目詳解】(1)如圖,連接OD,∵BC是⊙O的直徑,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半徑,∴PD是⊙O的切線;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP;(3)∵BC是⊙O的直徑,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BD=CD=BC=,∵△ABD∽△DCP,∴,∴,∴CP=16.9cm.【題目點(diǎn)撥】本題考查了切線的判定、相似三角形的判定與性質(zhì)等,熟練掌握切線的判定方法、相似三角形的判定與性質(zhì)定理是解題的關(guān)鍵.20、(1)45°.(1)MN1=ND1+DH1.理由見(jiàn)解析;(3)11.【解題分析】
(1)先根據(jù)AG⊥EF得出△ABE和△AGE是直角三角形,再根據(jù)HL定理得出△ABE≌△AGE,故可得出∠BAE=∠GAE,同理可得出∠GAF=∠DAF,由此可得出結(jié)論;(1)由旋轉(zhuǎn)的性質(zhì)得出∠BAM=∠DAH,再根據(jù)SAS定理得出△AMN≌△AHN,故可得出MN=HN.再由∠BAD=90°,AB=AD可知∠ABD=∠ADB=45°,根據(jù)勾股定理即可得出結(jié)論;(3)設(shè)正方形ABCD的邊長(zhǎng)為x,則CE=x-4,CF=x-2,再根據(jù)勾股定理即可得出x的值.【題目詳解】解:(1)在正方形ABCD中,∠B=∠D=90°,∵AG⊥EF,∴△ABE和△AGE是直角三角形.在Rt△ABE和Rt△AGE中,,∴△ABE≌△AGE(HL),∴∠BAE=∠GAE.同理,∠GAF=∠DAF.∴∠EAF=∠EAG+∠FAG=∠BAD=45°.(1)MN1=ND1+DH1.由旋轉(zhuǎn)可知:∠BAM=∠DAH,∵∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN.在△AMN與△AHN中,,∴△AMN≌△AHN(SAS),∴MN=HN.∵∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°.∴∠HDN=∠HDA+∠ADB=90°.∴NH1=ND1+DH1.∴MN1=ND1+DH1.(3)由(1)知,BE=EG=4,DF=FG=2.設(shè)正方形ABCD的邊長(zhǎng)為x,則CE=x-4,CF=x-2.∵CE1+CF1=EF1,∴(x-4)1+(x-2)1=101.解這個(gè)方程,得x1=11,x1=-1(不合題意,舍去).∴正方形ABCD的邊長(zhǎng)為11.【題目點(diǎn)撥】本題考查的是幾何變換綜合題,涉及到三角形全等的判定與性質(zhì)、勾股定理、正方形的性質(zhì)等知識(shí),難度適中.21、(1);(2).【解題分析】
(1)根據(jù)冪的運(yùn)算與實(shí)數(shù)的運(yùn)算性質(zhì)計(jì)算即可.(2)先整理為最簡(jiǎn)形式,再解每一個(gè)不等式,最后求其解集.【題目詳解】(1)解:原式==(2)解不等式①,得.解不等式②,得.∴原不等式組的解集為【題目點(diǎn)撥】本題考查了實(shí)數(shù)的混合運(yùn)算和解一元一次不等式組,熟練掌握和運(yùn)用相關(guān)運(yùn)算性質(zhì)是解答關(guān)鍵.22、(1)y=﹣x2+4x﹣3;(2)滿足條件的P點(diǎn)坐標(biāo)有3個(gè),它們是(2,1)或(2+,﹣1)或(2﹣,﹣1).【解題分析】
(1)由于已知拋物線與x軸的交點(diǎn)坐標(biāo),則可利用交點(diǎn)式求出拋物線解析式;(2)根據(jù)二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,可設(shè)P(t,-t2+4t-3),根據(jù)三角形面積公式得到?2?|-t2+4t-3|=1,然后去絕對(duì)值得到兩個(gè)一元二次方程,再解方程求出t即可得到P點(diǎn)坐標(biāo).【題目詳解】解:(1)拋物線解析式為y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;(2)設(shè)P(t,﹣t2+4t﹣3),因?yàn)镾△PAB=1,AB=3﹣1=2,所以?2?|﹣t2+4t﹣3|=1,當(dāng)﹣t2+4t﹣3=1時(shí),t1=t2=2,此時(shí)P點(diǎn)坐標(biāo)為(2,1);當(dāng)﹣t2+4t﹣3=﹣1時(shí),t1=2+,t2=2﹣,此時(shí)P點(diǎn)坐標(biāo)為(2+,﹣1)或(2﹣,﹣1),所以滿足條件的P點(diǎn)坐標(biāo)有3個(gè),它們是(2,1)或(2+,﹣1)或(2﹣,﹣1).【題目點(diǎn)撥】本題考查了待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關(guān)系式時(shí),要根據(jù)題目給定的條件,選擇恰當(dāng)?shù)姆椒ㄔO(shè)出關(guān)系式,從而代入數(shù)值求解.一般地,當(dāng)已知拋物線上三點(diǎn)時(shí),常選擇一般式,用待定系數(shù)法列三元一次方程組來(lái)求解;當(dāng)已知拋物線的頂點(diǎn)或?qū)ΨQ軸時(shí),常設(shè)其解析式為頂點(diǎn)式來(lái)求解;當(dāng)已知拋物線與x軸有兩個(gè)交點(diǎn)時(shí),可選擇設(shè)其解析式為交點(diǎn)式來(lái)求解.23、(1)是;(2)見(jiàn)解析;(3)150°.【解題分析】
(1)由菱形的性質(zhì)和等邊三角形的判定與性質(zhì)即可得出結(jié)論;(2)根據(jù)題意畫(huà)出圖形,由勾股定理即可得出答案;(3)由SAS證明△AEC≌△BED,得出AC=BD,由等距四邊形的定義得出AD=AB=AC,證出AD=AB=BD,△ABD是等邊三角形,得出∠DAB=60°,由SSS證明△AED≌△AEC,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠ACB和∠ACD的度數(shù),即可得出答案.【題目詳解】解:(1)一個(gè)內(nèi)角為120°的菱形是等距四邊形;故答案為是;(2)如圖2,圖3所示:在圖2中,由勾股定理得:在圖3中,由勾股定理得:故答案為(3)解:連接BD.如圖1所示:∵△ABE與△CDE都是等腰直角三角形,∴DE=EC,AE=EB,∠DEC+∠BEC=∠AEB+∠BEC,即∠AEC=∠DEB,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD,∵四邊形ABCD是以A為等距點(diǎn)的等距四邊形,∴AD=AB=AC,∴AD=AB=BD,∴△ABD是等邊三角形,∴∠DAB=60°,∴∠DAE=∠DAB﹣∠EAB=60°﹣45°=15°,在△AED和△AEC中,∴△AED≌△AEC(SSS),∴∠CAE=∠DAE=15°,∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,∵AB=AC,AC=AD,∴∴∠BCD=∠ACB+∠ACD=75°+75°=150°.【題目點(diǎn)撥】本題是四邊形綜合題目,考查了等距四邊形的判定與性質(zhì)、菱形的性質(zhì)、等邊三角形的判定與性質(zhì)、勾股定理、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、三角形內(nèi)角和定理等知識(shí);本題綜合性強(qiáng),有一定難度,證明三角形全等是解決問(wèn)題的關(guān)鍵.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇淮安曙光雙語(yǔ)校2025年中考物理試題仿真試題(二)含解析
- 湖北省孝感市云夢(mèng)縣2024-2025學(xué)年初三普通高校統(tǒng)一招生考試仿真卷(三)生物試題試卷含解析
- 新疆阿克蘇第一師第二中學(xué)2025屆3月初三教學(xué)測(cè)試(一)化學(xué)試題含解析
- 天津商業(yè)大學(xué)《空間創(chuàng)意與設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 河南工業(yè)和信息化職業(yè)學(xué)院《大學(xué)英語(yǔ)基礎(chǔ)課程一》2023-2024學(xué)年第二學(xué)期期末試卷
- 瓶裝水銷售合同風(fēng)險(xiǎn)防范與合規(guī)經(jīng)營(yíng)考核試卷
- 煙草批發(fā)商產(chǎn)品策略考核試卷
- 漁業(yè)捕撈作業(yè)優(yōu)化技術(shù)考核試卷
- 水電站施工安全管理規(guī)范與法規(guī)考核試卷
- 電力系統(tǒng)故障分析與設(shè)備保護(hù)策略考核試卷
- 【農(nóng)學(xué)課件】瓜類蔬菜栽培
- IATF16949體系推行計(jì)劃(任務(wù)清晰版)
- 2024年軍事理論知識(shí)全冊(cè)復(fù)習(xí)題庫(kù)及答案
- 2023年江蘇皋開(kāi)投資發(fā)展集團(tuán)有限公司招聘筆試真題
- 任務(wù) 混合動(dòng)力汽車空調(diào)系統(tǒng)典型構(gòu)造與檢修
- 2024-2025學(xué)年小學(xué)信息技術(shù)(信息科技)五年級(jí)上冊(cè)人教版教學(xué)設(shè)計(jì)合集
- 肺栓塞指南解讀2
- 2024智慧城市大數(shù)據(jù)信息資源標(biāo)識(shí)編碼規(guī)范
- 【衛(wèi)龍食品公司內(nèi)部控制現(xiàn)狀問(wèn)題及優(yōu)化的案例分析7100字(論文)】
- 人教版五年級(jí)語(yǔ)文下冊(cè)全冊(cè)課件【完整版】
- 產(chǎn)教融合背景下職業(yè)院校“五金”建設(shè)研究
評(píng)論
0/150
提交評(píng)論