版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省阜陽市城南中學2024屆中考數(shù)學四模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若二次函數(shù)y=-x2+bx+c與x軸有兩個交點(m,0),(m-6,0),該函數(shù)圖像向下平移n個單位長度時與x軸有且只有一個交點,則n的值是()A.3 B.6 C.9 D.362.要使式子有意義,x的取值范圍是()A.x≠1 B.x≠0 C.x>﹣1且≠0 D.x≥﹣1且x≠03.“龜兔賽跑”是同學們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時間t的關(guān)系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是()A.賽跑中,兔子共休息了50分鐘B.烏龜在這次比賽中的平均速度是0.1米/分鐘C.兔子比烏龜早到達終點10分鐘D.烏龜追上兔子用了20分鐘4.已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數(shù)是()A.8B.9C.10D.115.不等式組的解集是()A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤26.下列“數(shù)字圖形”中,既是軸對稱圖形,又是中心對稱圖形的有()A.1個B.2個C.3個D.4個7.據(jù)統(tǒng)計,2018年全國春節(jié)運輸人數(shù)約為3000000000人,將3000000000用科學記數(shù)法表示為()A.0.3×1010B.3×109C.30×108D.300×1078.將一副三角尺(在中,,,在中,,)如圖擺放,點為的中點,交于點,經(jīng)過點,將繞點順時針方向旋轉(zhuǎn)(),交于點,交于點,則的值為()A. B. C. D.9.下列各圖中,既可經(jīng)過平移,又可經(jīng)過旋轉(zhuǎn),由圖形①得到圖形②的是()A. B. C. D.10.若||=-,則一定是()A.非正數(shù) B.正數(shù) C.非負數(shù) D.負數(shù)二、填空題(共7小題,每小題3分,滿分21分)11.分式方程=1的解為_________.12.Rt△ABC的邊AB=5,AC=4,BC=3,矩形DEFG的四個頂點都在Rt△ABC的邊上,當矩形DEFG的面積最大時,其對角線的長為_______.13.如圖,菱形ABCD的邊AD⊥y軸,垂足為點E,頂點A在第二象限,頂點B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象經(jīng)過頂點C、D,若點C的橫坐標為5,BE=3DE,則k的值為______.14.某個“清涼小屋”自動售貨機出售A、B、C三種飲料.A、B、C三種飲料的單價分別是2元/瓶、3元/瓶、5元/瓶.工作日期間,每天上貨量是固定的,且能全部售出,其中,A飲科的數(shù)量(單位:瓶)是B飲料數(shù)量的2倍,B飲料的數(shù)量(單位:瓶)是C飲料數(shù)量的2倍.某個周六,A、B、C三種飲料的上貨量分別比一個工作日的上貨量增加了50%、60%、50%,且全部售出.但是由于軟件bug,發(fā)生了一起錯單(即消費者按某種飲料一瓶的價格投幣,但是取得了另一種飲料1瓶),結(jié)果這個周六的銷售收入比一個工作日的銷售收入多了503元.則這個“清涼小屋”自動售貨機一個工作日的銷售收入是_____元.15.如圖,點A在雙曲線上,點B在雙曲線上,且AB∥x軸,C、D在x軸上,若四邊形ABCD為矩形,則它的面積為.16.為了求1+2+22+23+…+22016+22017的值,可令S=1+2+22+23+…+22016+22017,則2S=2+22+23+24+…+22017+22018,因此2S﹣S=22018﹣1,所以1+22+23+…+22017=22018﹣1.請你仿照以上方法計算1+5+52+53+…+52017的值是_____.17.如果關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,那么的取值范圍是__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知A,B兩點在數(shù)軸上,點A表示的數(shù)為-10,OB=3OA,點M以每秒3個單位長度的速度從點A向右運動.點N以每秒2個單位長度的速度從點O向右運動(點M、點N同時出發(fā))數(shù)軸上點B對應(yīng)的數(shù)是______.經(jīng)過幾秒,點M、點N分別到原點O的距離相等?19.(5分)如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點,連接OG并延長交⊙O于點D,連接BD交AE于點F,延長AE至點C,使得FC=BC,連接BC.(1)求證:BC是⊙O的切線;(2)⊙O的半徑為5,tanA=,求FD的長.20.(8分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,6),B(3,n)兩點.求一次函數(shù)關(guān)系式;根據(jù)圖象直接寫出kx+b﹣>0的x的取值范圍;求△AOB的面積.21.(10分)如圖,在△ABC中,∠ABC=90°,BD為AC邊上的中線.(1)按如下要求尺規(guī)作圖,保留作圖痕跡,標注相應(yīng)的字母:過點C作直線CE,使CE⊥BC于點C,交BD的延長線于點E,連接AE;(2)求證:四邊形ABCE是矩形.22.(10分)問題提出(1)如圖1,正方形ABCD的對角線交于點O,△CDE是邊長為6的等邊三角形,則O、E之間的距離為;問題探究(2)如圖2,在邊長為6的正方形ABCD中,以CD為直徑作半圓O,點P為弧CD上一動點,求A、P之間的最大距離;問題解決(3)窯洞是我省陜北農(nóng)村的主要建筑,窯洞賓館更是一道靚麗的風景線,是因為窯洞除了它的堅固性及特有的外在美之外,還具有冬暖夏涼的天然優(yōu)點家住延安農(nóng)村的一對即將參加中考的雙胞胎小寶和小貝兩兄弟,發(fā)現(xiàn)自家的窯洞(如圖3所示)的門窗是由矩形ABCD及弓形AMD組成,AB=2m,BC=3.2m,弓高MN=1.2m(N為AD的中點,MN⊥AD),小寶說,門角B到門窗弓形弧AD的最大距離是B、M之間的距離.小貝說這不是最大的距離,你認為誰的說法正確?請通過計算求出門角B到門窗弓形弧AD的最大距離.23.(12分)在一個不透明的盒子中裝有大小和形狀相同的3個紅球和2個白球,把它們充分攪勻.“從中任意抽取1個球不是紅球就是白球”是事件,“從中任意抽取1個球是黑球”是事件;從中任意抽取1個球恰好是紅球的概率是;學校決定在甲、乙兩名同學中選取一名作為學生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個球,若兩球同色,則選甲;若兩球異色,則選乙.你認為這個規(guī)則公平嗎?請用列表法或畫樹狀圖法加以說明.24.(14分)先化簡,再求值:(﹣)÷,其中x的值從不等式組的整數(shù)解中選取.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】
設(shè)交點式為y=-(x-m)(x-m+6),在把它配成頂點式得到y(tǒng)=-[x-(m-3)]2+1,則拋物線的頂點坐標為(m-3,1),然后利用拋物線的平移可確定n的值.【題目詳解】設(shè)拋物線解析式為y=-(x-m)(x-m+6),∵y=-[x2-2(m-3)x+(m-3)2-1]=-[x-(m-3)]2+1,∴拋物線的頂點坐標為(m-3,1),∴該函數(shù)圖象向下平移1個單位長度時頂點落在x軸上,即拋物線與x軸有且只有一個交點,即n=1.故選C.【題目點撥】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì).2、D【解題分析】
根據(jù)二次根式由意義的條件是:被開方數(shù)大于或等于1,和分母不等于1,即可求解.【題目詳解】根據(jù)題意得:,解得:x≥-1且x≠1.故選:D.【題目點撥】本題考查的知識點為:分式有意義,分母不為1;二次根式的被開方數(shù)是非負數(shù).3、D【解題分析】分析:根據(jù)圖象得出相關(guān)信息,并對各選項一一進行判斷即可.詳解:由圖象可知,在賽跑中,兔子共休息了:50-10=40(分鐘),故A選項錯誤;烏龜跑500米用了50分鐘,平均速度為:(米/分鐘),故B選項錯誤;兔子是用60分鐘到達終點,烏龜是用50分鐘到達終點,兔子比烏龜晚到達終點10分鐘,故C選項錯誤;在比賽20分鐘時,烏龜和兔子都距起點200米,即烏龜追上兔子用了20分鐘,故D選項正確.故選D.點睛:本題考查了從圖象中獲取信息的能力.正確識別圖象、獲取信息并進行判斷是解題的關(guān)鍵.4、C【解題分析】試題分析:已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數(shù)是360÷36=10,故選C.考點:多邊形的內(nèi)角和外角.5、D【解題分析】由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式組的解集為﹣1<x≤2,故選D6、C【解題分析】
根據(jù)軸對稱圖形與中心對稱圖形的概念判斷即可.【題目詳解】第一個圖形不是軸對稱圖形,是中心對稱圖形;第二、三、四個圖形是軸對稱圖形,也是中心對稱圖形;故選:C.【題目點撥】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.7、B【解題分析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).【題目詳解】解:根據(jù)科學計數(shù)法的定義可得,3000000000=3×109,故選擇B.【題目點撥】本題考查了科學計數(shù)法的定義,確定n的值是易錯點.8、C【解題分析】
先根據(jù)直角三角形斜邊上的中線性質(zhì)得CD=AD=DB,則∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠PDM=∠CDN=α,于是可判斷△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定義得到tan∠PCD=tan30°=,于是可得=.【題目詳解】∵點D為斜邊AB的中點,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF繞點D順時針方向旋轉(zhuǎn)α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故選:C.【題目點撥】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了相似三角形的判定與性質(zhì).9、D【解題分析】A,B,C只能通過旋轉(zhuǎn)得到,D既可經(jīng)過平移,又可經(jīng)過旋轉(zhuǎn)得到,故選D.10、A【解題分析】
根據(jù)絕對值的性質(zhì)進行求解即可得.【題目詳解】∵|-x|=-x,又|-x|≥1,∴-x≥1,即x≤1,即x是非正數(shù),故選A.【題目點撥】本題考查了絕對值的性質(zhì),熟練掌握絕對值的性質(zhì)是解題的關(guān)鍵.絕對值的性質(zhì):一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);1的絕對值是1.二、填空題(共7小題,每小題3分,滿分21分)11、x=1【解題分析】分析:分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.詳解:兩邊都乘以x+4,得:3x=x+4,解得:x=1,檢驗:x=1時,x+4=6≠0,所以分式方程的解為x=1,故答案為:x=1.點睛:此題考查了解分式方程,利用了轉(zhuǎn)化的思想,解分式方程注意要檢驗.12、或【解題分析】
分兩種情形畫出圖形分別求解即可解決問題【題目詳解】情況1:如圖1中,四邊形DEFG是△ABC的內(nèi)接矩形,設(shè)DE=CF=x,則BF=3-x∵EF∥AC,∴=∴=∴EF=(3-x)∴S矩形DEFG=x?(3-x)=﹣(x-)2+3∴x=時,矩形的面積最大,最大值為3,此時對角線=.情況2:如圖2中,四邊形DEFG是△ABC的內(nèi)接矩形,設(shè)DE=GF=x,作CH⊥AB于H,交DG于T.則CH=,CT=﹣x,∵DG∥AB,∴△CDG∽△CAB,∴∴∴DG=5﹣x,∴S矩形DEFG=x(5﹣x)=﹣(x﹣)2+3,∴x=時,矩形的面積最大為3,此時對角線==∴矩形面積的最大值為3,此時對角線的長為或故答案為或【題目點撥】本題考查相似三角形的應(yīng)用、矩形的性質(zhì)、二次函數(shù)的最值等知識,解題的關(guān)鍵是學會用分類討論的思想思考問題13、【解題分析】
過點D作DF⊥BC于點F,由菱形的性質(zhì)可得BC=CD,AD∥BC,可證四邊形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函數(shù)的性質(zhì)可求k的值.【題目詳解】如圖,過點D作DF⊥BC于點F,∵四邊形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四邊形DEBF是矩形,∴DF=BE,DE=BF,∵點C的橫坐標為5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,設(shè)點C(5,m),點D(1,m+3),∵反比例函數(shù)y=圖象過點C,D,∴5m=1×(m+3),∴m=,∴點C(5,),∴k=5×=,故答案為:【題目點撥】本題考查了反比例函數(shù)圖象點的坐標特征,菱形的性質(zhì),勾股定理,求出DE的長度是本題的關(guān)鍵.14、950【解題分析】
設(shè)工作日期間C飲料數(shù)量為x瓶,則B飲料數(shù)量為2x瓶,A飲料數(shù)量為4x瓶,得到工作日期間一天的銷售收入為:8x+6x+5x=19x元,和周六銷售銷售收入為:12x+9.6x+7.5x=29.1x元,再結(jié)合題意得到10.1x﹣(5﹣3)=503,計算即可得到答案.【題目詳解】解:設(shè)工作日期間C飲料數(shù)量為x瓶,則B飲料數(shù)量為2x瓶,A飲料數(shù)量為4x瓶,工作日期間一天的銷售收入為:8x+6x+5x=19x元,周六C飲料數(shù)量為1.5x瓶,則B飲料數(shù)量為3.2x瓶,A飲料數(shù)量為6x瓶,周六銷售銷售收入為:12x+9.6x+7.5x=29.1x元,周六銷售收入與工作日期間一天銷售收入的差為:29.1x﹣19x=10.1x元,由于發(fā)生一起錯單,收入的差為503元,因此,503加減一瓶飲料的差價一定是10.1的整數(shù)倍,所以這起錯單發(fā)生在B、C飲料上(B、C一瓶的差價為2元),且是消費者付B飲料的錢,取走的是C飲料;于是有:10.1x﹣(5﹣3)=503解得:x=50工作日期間一天的銷售收入為:19×50=950元,故答案為:950.【題目點撥】本題考查一元一次方程的實際應(yīng)用,解題的關(guān)鍵是由題意得到等量關(guān)系.15、2【解題分析】
如圖,過A點作AE⊥y軸,垂足為E,∵點A在雙曲線上,∴四邊形AEOD的面積為1∵點B在雙曲線上,且AB∥x軸,∴四邊形BEOC的面積為3∴四邊形ABCD為矩形,則它的面積為3-1=216、【解題分析】
根據(jù)上面的方法,可以令S=1+5+52+53+…+52017,則5S=5+52+53+…+52012+52018,再相減算出S的值即可.【題目詳解】解:令S=1+5+52+53+…+52017,則5S=5+52+53+…+52012+52018,5S﹣S=﹣1+52018,4S=52018﹣1,則S=,故答案為:.【題目點撥】此題參照例子,采用類比的方法就可以解決,注意這里由于都是5的次方,所以要用5S來達到抵消的目的.17、k>-且k≠1【解題分析】由題意知,k≠1,方程有兩個不相等的實數(shù)根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.又∵方程是一元二次方程,∴k≠1,∴k>-1/4且k≠1.三、解答題(共7小題,滿分69分)18、(1)1;(2)經(jīng)過2秒或2秒,點M、點N分別到原點O的距離相等【解題分析】試題分析:(1)根據(jù)OB=3OA,結(jié)合點B的位置即可得出點B對應(yīng)的數(shù);(2)設(shè)經(jīng)過x秒,點M、點N分別到原點O的距離相等,找出點M、N對應(yīng)的數(shù),再分點M、點N在點O兩側(cè)和點M、點N重合兩種情況考慮,根據(jù)M、N的關(guān)系列出關(guān)于x的一元一次方程,解之即可得出結(jié)論.試題解析:(1)∵OB=3OA=1,
∴B對應(yīng)的數(shù)是1.
(2)設(shè)經(jīng)過x秒,點M、點N分別到原點O的距離相等,
此時點M對應(yīng)的數(shù)為3x-2,點N對應(yīng)的數(shù)為2x.
①點M、點N在點O兩側(cè),則
2-3x=2x,
解得x=2;
②點M、點N重合,則,
3x-2=2x,
解得x=2.
所以經(jīng)過2秒或2秒,點M、點N分別到原點O的距離相等.19、(1)證明見解析(2)【解題分析】
(1)由點G是AE的中點,根據(jù)垂徑定理可知OD⊥AE,由等腰三角形的性質(zhì)可得∠CBF=∠DFG,∠D=∠OBD,從而∠OBD+∠CBF=90°,從而可證結(jié)論;(2)連接AD,解Rt△OAG可求出OG=3,AG=4,進而可求出DG的長,再證明△DAG∽△FDG,由相似三角形的性質(zhì)求出FG的長,再由勾股定理即可求出FD的長.【題目詳解】(1)∵點G是AE的中點,∴OD⊥AE,∵FC=BC,∴∠CBF=∠CFB,∵∠CFB=∠DFG,∴∠CBF=∠DFG∵OB=OD,∴∠D=∠OBD,∵∠D+∠DFG=90°,∴∠OBD+∠CBF=90°即∠ABC=90°∵OB是⊙O的半徑,∴BC是⊙O的切線;(2)連接AD,∵OA=5,tanA=,∴OG=3,AG=4,∴DG=OD﹣OG=2,∵AB是⊙O的直徑,∴∠ADF=90°,∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°∴∠DAG=∠FDG,∴△DAG∽△FDG,∴,∴DG2=AG?FG,∴4=4FG,∴FG=1∴由勾股定理可知:FD=.【題目點撥】本題考查了垂徑定理,等腰三角形的性質(zhì),切線的判定,解直角三角形,相似三角形的判定與性質(zhì),勾股定理等知識,求出∠CBF=∠DFG,∠D=∠OBD是解(1)的關(guān)鍵,證明證明△DAG∽△FDG是解(2)的關(guān)鍵.20、(1)y=-2x+1;(2)1<x<2;(2)△AOB的面積為1.【解題分析】試題分析:(1)首先根據(jù)A(m,6),B(2,n)兩點在反比例函數(shù)y=(x>0)的圖象上,求出m,n的值各是多少;然后求出一次函數(shù)的解析式,再根據(jù)一元二次不等式的求法,求出x的取值范圍即可.(2)由-2x+1-<0,求出x的取值范圍即可.(2)首先分別求出C點、D點的坐標的坐標各是多少;然后根據(jù)三角形的面積的求法,求出△AOB的面積是多少即可.試題解析:(1)∵A(m,6),B(2,n)兩點在反比例函數(shù)y=(x>0)的圖象上,∴6=,,解得m=1,n=2,∴A(1,6),B(2,2),∵A(1,6),B(2,2)在一次函數(shù)y=kx+b的圖象上,∴,解得,∴y=-2x+1.(2)由-2x+1-<0,解得0<x<1或x>2.(2)當x=0時,y=-2×0+1=1,∴C點的坐標是(0,1);當y=0時,0=-2x+1,解得x=4,∴D點的坐標是(4,0);∴S△AOB=×4×1-×1×1-×4×2=16-4-4=1.21、(1)見解析;(2)見解析.【解題分析】
(1)根據(jù)題意作圖即可;
(2)先根據(jù)BD為AC邊上的中線,AD=DC,再證明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四邊形ABCE是矩形.【題目詳解】(1)解:如圖所示:E點即為所求;(2)證明:∵CE⊥BC,∴∠BCE=90°,∵∠ABC=90°,∴∠BCE+∠ABC=180°,∴AB∥CE,∴∠ABE=∠CEB,∠BAC=∠ECA,∵BD為AC邊上的中線,∴AD=DC,在△ABD和△CED中,∴△ABD≌△CED(AAS),∴AB=EC,∴四邊形ABCE是平行四邊形,∵∠ABC=90°,∴平行四邊形ABCE是矩形.【題目點撥】本題考查了全等三角形的判定與性質(zhì)與矩形的性質(zhì),解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì)與矩形的性質(zhì).22、(1);(2);(2)小貝的說法正確,理由見解析,.【解題分析】
(1)連接AC,BD,由OE垂直平分DC可得DH長,易知OH、HE長,相加即可;(2)補全⊙O,連接AO并延長交⊙O右半側(cè)于點P,則此時A、P之間的距離最大,在Rt△AOD中,由勾股定理可得AO長,易求AP長;(1)小貝的說法正確,補全弓形弧AD所在的⊙O,連接ON,OA,OD,過點O作OE⊥AB于點E,連接BO并延長交⊙O上端于點P,則此時B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,在Rt△ANO中,設(shè)AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO長,易知BP長.【題目詳解】解:(1)如圖1,連接AC,BD,對角線交點為O,連接OE交CD于H,則OD=OC.∵△DCE為等邊三角形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年高端裝備制造技術(shù)與專利許可合同
- 2024年甲醇分銷合同
- 2024年餐飲業(yè)標準設(shè)備租賃合同模板版
- 2025年度環(huán)保設(shè)備采購與安裝合同6篇
- 2024年限定版圍墻修繕合作協(xié)議版B版
- 2025年度環(huán)保產(chǎn)業(yè)技術(shù)轉(zhuǎn)移與轉(zhuǎn)化合同3篇
- 2024年版泵車施工廢棄物處理合同
- 2024年高端裝備制造業(yè)原材料采購合同范本3篇
- 2024年職工停薪留職期間工作績效考核合同3篇
- 2024高端精密儀器制造與維修服務(wù)合同
- 智慧燃氣安全監(jiān)管平臺解決方案
- 助產(chǎn)士核心勝任力量表
- 數(shù)據(jù)標準管理實踐白皮書
- DB64∕T 1754-2020 寧夏磚瓦用粘土礦產(chǎn)地質(zhì)勘查技術(shù)規(guī)程
- CECA/GC1-2015建設(shè)項目投資估算編審規(guī)程
- 八年級生地會考試卷與答案
- 主體結(jié)構(gòu)檢驗批一套
- 螺桿壓縮機檢修手冊
- 七年級科技制作教案全冊
- 建筑工程設(shè)計過程控制流程圖
- T∕CRIA 20002-2021 炭黑原料油 煤焦油
評論
0/150
提交評論