江蘇省揚州市江都區(qū)國際校2024屆中考數(shù)學(xué)模試卷含解析_第1頁
江蘇省揚州市江都區(qū)國際校2024屆中考數(shù)學(xué)模試卷含解析_第2頁
江蘇省揚州市江都區(qū)國際校2024屆中考數(shù)學(xué)模試卷含解析_第3頁
江蘇省揚州市江都區(qū)國際校2024屆中考數(shù)學(xué)模試卷含解析_第4頁
江蘇省揚州市江都區(qū)國際校2024屆中考數(shù)學(xué)模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省揚州市江都區(qū)國際校2024屆中考數(shù)學(xué)模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖是我市4月1日至7日一周內(nèi)“日平均氣溫變化統(tǒng)計圖”,在這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是()A.13;13 B.14;10 C.14;13 D.13;142.某車間有27名工人,生產(chǎn)某種由一個螺栓套兩個螺母的產(chǎn)品,每人每天生產(chǎn)螺母16個或螺栓22個,若分配x名工人生產(chǎn)螺栓,其他工人生產(chǎn)螺母,恰好使每天生產(chǎn)的螺栓和螺母配套,則下面所列方程中正確的是()A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)3.如圖,在中,,將繞點逆時針旋轉(zhuǎn),使點落在線段上的點處,點落在點處,則兩點間的距離為()A. B. C. D.4.有15位同學(xué)參加歌詠比賽,所得的分?jǐn)?shù)互不相同,取得分前8位同學(xué)進入決賽.某同學(xué)知道自己的分?jǐn)?shù)后,要判斷自己能否進入決賽,他只需知道這15位同學(xué)的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差5.關(guān)于反比例函數(shù),下列說法正確的是()A.函數(shù)圖像經(jīng)過點(2,2); B.函數(shù)圖像位于第一、三象限;C.當(dāng)時,函數(shù)值隨著的增大而增大; D.當(dāng)時,.6.已知2是關(guān)于x的方程x2-2mx+3m=0的一個根,并且這個方程的兩個根恰好是等腰三角形ABC的兩條邊長,則三角形ABC的周長為()A.10 B.14 C.10或14 D.8或107.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧交AB于M、AC于N,再分別以M、N為圓心,大于12MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于D①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△ACD:S△ACB=1:1.其中正確的有()A.只有①②③ B.只有①②④ C.只有①③④ D.①②③④8.如圖是某個幾何體的三視圖,該幾何體是()A.三棱柱 B.三棱錐 C.圓柱 D.圓錐9.桌面上有A、B兩球,若要將B球射向桌面任意一邊的黑點,則B球一次反彈后擊中A球的概率是()A. B. C. D.10.如圖,由四個正方體組成的幾何體的左視圖是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AB∥CD,BE交CD于點D,CE⊥BE于點E,若∠B=34°,則∠C的大小為________度.12.分解因式:m3–m=_____.13.如圖,圓錐底面圓心為O,半徑OA=1,頂點為P,將圓錐置于平面上,若保持頂點P位置不變,將圓錐順時針滾動三周后點A恰好回到原處,則圓錐的高OP=_____.14.如果a2﹣a﹣1=0,那么代數(shù)式(a﹣)的值是.15.如圖,把一個直角三角尺ACB繞著30°角的頂點B順時針旋轉(zhuǎn),使得點A與CB的延長線上的點E重合連接CD,則∠BDC的度數(shù)為_____度.16.如圖,在矩形ABCD中,點E是CD的中點,點F是BC上一點,且FC=2BF,連接AE,EF.若AB=2,AD=3,則tan∠AEF的值是_____.三、解答題(共8題,共72分)17.(8分)某商店老板準(zhǔn)備購買A、B兩種型號的足球共100只,已知A型號足球進價每只40元,B型號足球進價每只60元.(1)若該店老板共花費了5200元,那么A、B型號足球各進了多少只;(2)若B型號足球數(shù)量不少于A型號足球數(shù)量的,那么進多少只A型號足球,可以讓該老板所用的進貨款最少?18.(8分)(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2)(m﹣1﹣).19.(8分)科技改變世界.2017年底,快遞分揀機器人從微博火到了朋友圈,據(jù)介紹,這些機器人不僅可以自動規(guī)劃最優(yōu)路線,將包裹準(zhǔn)確地放入相應(yīng)的格口,還會感應(yīng)避讓障礙物,自動歸隊取包裹.沒電的時候還會自己找充電樁充電.某快遞公司啟用80臺A種機器人、300臺B種機器人分揀快遞包裹.A,B兩種機器人全部投入工作,1小時共可以分揀1.44萬件包裹,若全部A種機器人工作3小時,全部B種機器人工作2小時,一共可以分揀3.12萬件包裹.(1)求兩種機器人每臺每小時各分揀多少件包裹;(2)為了進一步提高效率,快遞公司計劃再購進A,B兩種機器人共200臺,若要保證新購進的這批機器人每小時的總分揀量不少于7000件,求最多應(yīng)購進A種機器人多少臺?20.(8分)如圖,已知拋物線y=ax2+bx+1經(jīng)過A(﹣1,0),B(1,1)兩點.(1)求該拋物線的解析式;(2)閱讀理解:在同一平面直角坐標(biāo)系中,直線l1:y=k1x+b1(k1,b1為常數(shù),且k1≠0),直線l2:y=k2x+b2(k2,b2為常數(shù),且k2≠0),若l1⊥l2,則k1?k2=﹣1.解決問題:①若直線y=2x﹣1與直線y=mx+2互相垂直,則m的值是____;②拋物線上是否存在點P,使得△PAB是以AB為直角邊的直角三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由;(3)M是拋物線上一動點,且在直線AB的上方(不與A,B重合),求點M到直線AB的距離的最大值.21.(8分)如圖,在平面直角坐標(biāo)系中,拋物線的圖象經(jīng)過和兩點,且與軸交于,直線是拋物線的對稱軸,過點的直線與直線相交于點,且點在第一象限.(1)求該拋物線的解析式;(2)若直線和直線、軸圍成的三角形面積為6,求此直線的解析式;(3)點在拋物線的對稱軸上,與直線和軸都相切,求點的坐標(biāo).22.(10分)如圖,建筑物BC上有一旗桿AB,從與BC相距40m的D處觀測旗桿頂部A的仰角為50°,觀測旗桿底部B的仰角為45°,求旗桿AB的高度.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)23.(12分)如圖1,在直角梯形ABCD中,動點P從B點出發(fā),沿B→C→D→A勻速運動,設(shè)點P運動的路程為x,△ABP的面積為y,圖象如圖2所示.(1)在這個變化中,自變量、因變量分別是、;(2)當(dāng)點P運動的路程x=4時,△ABP的面積為y=;(3)求AB的長和梯形ABCD的面積.24.正方形ABCD的邊長是10,點E是AB的中點,動點F在邊BC上,且不與點B、C重合,將△EBF沿EF折疊,得到△EB′F.(1)如圖1,連接AB′.①若△AEB′為等邊三角形,則∠BEF等于多少度.②在運動過程中,線段AB′與EF有何位置關(guān)系?請證明你的結(jié)論.(2)如圖2,連接CB′,求△CB′F周長的最小值.(3)如圖3,連接并延長BB′,交AC于點P,當(dāng)BB′=6時,求PB′的長度.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】

根據(jù)統(tǒng)計圖,利用眾數(shù)與中位數(shù)的概念即可得出答案.【題目詳解】從統(tǒng)計圖中可以得出這一周的氣溫分別是:12,15,14,10,13,14,11所以眾數(shù)為14;將氣溫按從低到高的順序排列為:10,11,12,13,14,14,15所以中位數(shù)為13故選:C.【題目點撥】本題主要考查中位數(shù)和眾數(shù),掌握中位數(shù)和眾數(shù)的求法是解題的關(guān)鍵.2、D【解題分析】設(shè)分配x名工人生產(chǎn)螺栓,則(27-x)人生產(chǎn)螺母,根據(jù)一個螺栓要配兩個螺母可得方程2×22x=16(27-x),故選D.3、A【解題分析】

先利用勾股定理計算出AB,再在Rt△BDE中,求出BD即可;【題目詳解】解:∵∠C=90°,AC=4,BC=3,

∴AB=5,

∵△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,

∴AE=AC=4,DE=BC=3,

∴BE=AB-AE=5-4=1,

在Rt△DBE中,BD=,故選A.【題目點撥】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.4、B【解題分析】

由中位數(shù)的概念,即最中間一個或兩個數(shù)據(jù)的平均數(shù);可知15人成績的中位數(shù)是第8名的成績.根據(jù)題意可得:參賽選手要想知道自己是否能進入前8名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【題目詳解】解:由于15個人中,第8名的成績是中位數(shù),故小方同學(xué)知道了自己的分?jǐn)?shù)后,想知道自己能否進入決賽,還需知道這十五位同學(xué)的分?jǐn)?shù)的中位數(shù).故選B.【題目點撥】此題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當(dāng)?shù)倪\用.5、C【解題分析】

直接利用反比例函數(shù)的性質(zhì)分別分析得出答案.【題目詳解】A、關(guān)于反比例函數(shù)y=-,函數(shù)圖象經(jīng)過點(2,-2),故此選項錯誤;B、關(guān)于反比例函數(shù)y=-,函數(shù)圖象位于第二、四象限,故此選項錯誤;C、關(guān)于反比例函數(shù)y=-,當(dāng)x>0時,函數(shù)值y隨著x的增大而增大,故此選項正確;D、關(guān)于反比例函數(shù)y=-,當(dāng)x>1時,y>-4,故此選項錯誤;故選C.【題目點撥】此題主要考查了反比例函數(shù)的性質(zhì),正確掌握相關(guān)函數(shù)的性質(zhì)是解題關(guān)鍵.6、B【解題分析】試題分析:∵2是關(guān)于x的方程x2﹣2mx+3m=0的一個根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=1.①當(dāng)1是腰時,2是底邊,此時周長=1+1+2=2;②當(dāng)1是底邊時,2是腰,2+2<1,不能構(gòu)成三角形.所以它的周長是2.考點:解一元二次方程-因式分解法;一元二次方程的解;三角形三邊關(guān)系;等腰三角形的性質(zhì).7、D【解題分析】

①根據(jù)作圖過程可判定AD是∠BAC的角平分線;②利用角平分線的定義可推知∠CAD=10°,則由直角三角形的性質(zhì)來求∠ADC的度數(shù);③利用等角對等邊可以證得△ADB是等腰三角形,由等腰三角形的“三合一”性質(zhì)可以證明點D在AB的中垂線上;④利用10°角所對的直角邊是斜邊的一半,三角形的面積計算公式來求兩個三角形面積之比.【題目詳解】①根據(jù)作圖過程可知AD是∠BAC的角平分線,①正確;②如圖,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分線,∴∠1=∠2=12∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正確;③∵∠1=∠B=10°,∴AD=BD,∴點D在AB的中垂線上,③正確;④如圖,∵在直角△ACD中,∠2=10°,∴CD=12AD,∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC?CD=14AC?AD.∴S△ABC=12AC?BC=12AC?32AD=3【題目點撥】本題主要考查尺規(guī)作角平分線、角平分線的性質(zhì)定理、三角形的外角以及等腰三角形的性質(zhì),熟練掌握有關(guān)知識點是解答的關(guān)鍵.8、A【解題分析】試題分析:觀察可得,主視圖是三角形,俯視圖是兩個矩形,左視圖是矩形,所以這個幾何體是三棱柱,故選A.考點:由三視圖判定幾何體.9、B【解題分析】試題解析:由圖可知可以瞄準(zhǔn)的點有2個..∴B球一次反彈后擊中A球的概率是.故選B.10、B【解題分析】從左邊看可以看到兩個小正方形摞在一起,故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、56【解題分析】

解:∵AB∥CD,∴又∵CE⊥BE,∴Rt△CDE中,故答案為56.12、m(m+1)(m-1)【解題分析】

根據(jù)因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解),可以先提公因式,再利用平方差完成因式分解【題目詳解】解:故答案為:m(m+1)(m-1).【題目點撥】本題考查因式分解,掌握因式分解的技巧是解題關(guān)鍵.13、2【解題分析】

先利用圓的周長公式計算出PA的長,然后利用勾股定理計算PO的長.【題目詳解】解:根據(jù)題意得2π×PA=3×2π×1,所以PA=3,所以圓錐的高OP=PA故答案為22【題目點撥】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.14、1【解題分析】分析:先由a2﹣a﹣1=0可得a2﹣a=1,再把(a﹣)的第一個括號內(nèi)通分,并把分子分解因式后約分化簡,然后把a2﹣a=1代入即可.詳解:∵a2﹣a﹣1=0,即a2﹣a=1,∴原式===a(a﹣1)=a2﹣a=1,故答案為1點睛:本題考查了分式的化簡求值,解題的關(guān)鍵是正確掌握分式混合運算的順序:先算乘除,后算加減,有括號的先算括號里,整體代入法是求代數(shù)式的值常用的一種方法.15、1【解題分析】

根據(jù)△EBD由△ABC旋轉(zhuǎn)而成,得到△ABC≌△EBD,則BC=BD,∠EBD=∠ABC=30°,則有∠BDC=∠BCD,∠DBC=180﹣30°=10°,化簡計算即可得出.【題目詳解】解:∵△EBD由△ABC旋轉(zhuǎn)而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=10°,∴;故答案為:1.【題目點撥】此題考查旋轉(zhuǎn)的性質(zhì),即圖形旋轉(zhuǎn)后與原圖形全等.16、1.【解題分析】

連接AF,由E是CD的中點、FC=2BF以及AB=2、AD=3可知AB=FC,BF=CE,則可證△ABF≌△FCE,進一步可得到△AFE是等腰直角三角形,則∠AEF=45°.【題目詳解】解:連接AF,∵E是CD的中點,∴CE=,AB=2,∵FC=2BF,AD=3,∴BF=1,CF=2,∴BF=CE,F(xiàn)C=AB,∵∠B=∠C=90°,∴△ABF≌△FCE,∴AF=EF,∠BAF=∠CFE,∠AFB=∠FEC,∴∠AFE=90°,∴△AFE是等腰直角三角形,∴∠AEF=45°,∴tan∠AEF=1.故答案為:1.【題目點撥】本題結(jié)合三角形全等考查了三角函數(shù)的知識.三、解答題(共8題,共72分)17、(1)A型足球進了40個,B型足球進了60個;(2)當(dāng)x=60時,y最小=4800元.【解題分析】

(1)設(shè)A型足球x個,則B型足球(100-x)個,根據(jù)該店老板共花費了5200元列方程求解即可;(2)設(shè)進貨款為y元,根據(jù)題意列出函數(shù)關(guān)系式,根據(jù)B型號足球數(shù)量不少于A型號足球數(shù)量的求出x的取值范圍,然后根據(jù)一次函數(shù)的性質(zhì)求解即可.【題目詳解】解:(1)設(shè)A型足球x個,則B型足球(100-x)個,∴40x+60(100-x)=5200,解得:x=40,∴100-x=100-40=60個,答:A型足球進了40個,B型足球進了60個.(2)設(shè)A型足球x個,則B型足球(100-x)個,100-x≥,解得:x≤60,設(shè)進貨款為y元,則y=40x+60(100-x)=-20x+6000,∵k=-20,∴y隨x的增大而減小,∴當(dāng)x=60時,y最小=4800元.【題目點撥】本題考查了一元一次方程的應(yīng)用,一次函數(shù)的應(yīng)用,仔細(xì)審題,找出解決問題所需的數(shù)量關(guān)系是解答本題的關(guān)鍵.18、(1);(2)【解題分析】試題分析:(1)先去括號,再合并同類項即可;(2)先計算括號里的,再將除法轉(zhuǎn)換在乘法計算.試題解析:(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)=a2﹣2ab+b2﹣a2+2ab+4a2﹣b2=4a2;(2).====.19、(1)A種機器人每臺每小時各分揀30件包裹,B種機器人每臺每小時各分揀40件包裹(2)最多應(yīng)購進A種機器人100臺【解題分析】

(1)A種機器人每臺每小時各分揀x件包裹,B種機器人每臺每小時各分揀y件包裹,根據(jù)題意列方程組即可得到結(jié)論;(2)設(shè)最多應(yīng)購進A種機器人a臺,購進B種機器人(200?a)臺,由題意得,根據(jù)題意兩不等式即可得到結(jié)論.【題目詳解】(1)A種機器人每臺每小時各分揀x件包裹,B種機器人每臺每小時各分揀y件包裹,由題意得,,解得,,答:A種機器人每臺每小時各分揀30件包裹,B種機器人每臺每小時各分揀40件包裹;(2)設(shè)最多應(yīng)購進A種機器人a臺,購進B種機器人(200﹣a)臺,由題意得,30a+40(200﹣a)≥7000,解得:a≤100,則最多應(yīng)購進A種機器人100臺.【題目點撥】本題考查了二元一次方程組,一元一次不等式的應(yīng)用,正確的理解題意是解題的關(guān)鍵.20、(1)y=﹣x2+x+1;(2)①-;②點P的坐標(biāo)(6,﹣14)(4,﹣5);(3).【解題分析】

(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;

(2)根據(jù)垂線間的關(guān)系,可得PA,PB的解析式,根據(jù)解方程組,可得P點坐標(biāo);

(3)根據(jù)垂直于x的直線上兩點間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得MQ,根據(jù)三角形的面積,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得面積的最大值,根據(jù)三角形的底一定時面積與高成正比,可得三角形高的最大值【題目詳解】解:(1)將A,B點坐標(biāo)代入,得,解得,拋物線的解析式為y=;(2)①由直線y=2x﹣1與直線y=mx+2互相垂直,得2m=﹣1,即m=﹣;故答案為﹣;②AB的解析式為當(dāng)PA⊥AB時,PA的解析式為y=﹣2x﹣2,聯(lián)立PA與拋物線,得,解得(舍),,即P(6,﹣14);當(dāng)PB⊥AB時,PB的解析式為y=﹣2x+3,聯(lián)立PB與拋物線,得,解得(舍),即P(4,﹣5),綜上所述:△PAB是以AB為直角邊的直角三角形,點P的坐標(biāo)(6,﹣14)(4,﹣5);(3)如圖:,∵M(t,﹣t2+t+1),Q(t,t+),∴MQ=﹣t2+S△MAB=MQ|xB﹣xA|=(﹣t2+)×2=﹣t2+,當(dāng)t=0時,S取最大值,即M(0,1).由勾股定理,得AB==,設(shè)M到AB的距離為h,由三角形的面積,得h==.點M到直線AB的距離的最大值是.【題目點撥】本題考查了二次函數(shù)綜合題,涉及到拋物線的解析式求法,兩直線垂直,解一元二次方程組,及點到直線的最大距離,需要注意的是必要的輔助線法是解題的關(guān)鍵21、(1);(2);(3)或.【解題分析】

(1)根據(jù)圖象經(jīng)過M(1,0)和N(3,0)兩點,且與y軸交于D(0,3),可利用待定系數(shù)法求出二次函數(shù)解析式;

(2)根據(jù)直線AB與拋物線的對稱軸和x軸圍成的三角形面積為6,得出AC,BC的長,得出B點的坐標(biāo),即可利用待定系數(shù)法求出一次函數(shù)解析式;

(3)利用三角形相似求出△ABC∽△PBF,即可求出圓的半徑,即可得出P點的坐標(biāo).【題目詳解】(1)拋物線的圖象經(jīng)過,,,把,,代入得:解得:,拋物線解析式為;(2)拋物線改寫成頂點式為,拋物線對稱軸為直線,∴對稱軸與軸的交點C的坐標(biāo)為,,設(shè)點B的坐標(biāo)為,,則,,∴∴點B的坐標(biāo)為,設(shè)直線解析式為:,把,代入得:,解得:,直線解析式為:.(3)①∵當(dāng)點P在拋物線的對稱軸上,⊙P與直線AB和x軸都相切,

設(shè)⊙P與AB相切于點F,與x軸相切于點C,如圖1;

∴PF⊥AB,AF=AC,PF=PC,

∵AC=1+2=3,BC=4,

∴AB==5,AF=3,

∴BF=2,

∵∠FBP=∠CBA,

∠BFP=∠BCA=90,

∴△ABC∽△PBF,∴,∴,解得:,∴點P的坐標(biāo)為(2,);②設(shè)⊙P與AB相切于點F,與軸相切于點C,如圖2:∴PF⊥AB,PF=PC,

∵AC=3,BC=4,AB=5,∵∠FBP=∠CBA,

∠BFP=∠BCA=90,

∴△ABC∽△PBF,∴,∴,解得:,∴點P的坐標(biāo)為(2,-6),綜上所述,與直線和都相切時,或.【題目點撥】本題考查了二次函數(shù)綜合題,涉及到用待定系數(shù)法求一函數(shù)的解析式、二次函數(shù)的解析式及相似三角形的判定和性質(zhì)、切線的判定和性質(zhì),根據(jù)題意畫出圖形,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵.22、7.6m.【解題分析】

利用CD及正切函數(shù)的定義求得BC,AC長,把這兩條線段相減即為AB長【題目詳解】解:由題意,∠BDC=45°,∠ADC=50°,∠ACD=90°,CD=40m.∵在Rt△BDC中,tan∠BDC=BCCD∴BC=CD=40m.∵在Rt△ADC中,tan∠ADC=ACCD∴tan50∴AB≈7.6(m).答:旗桿AB的高度約為7.6m.【題目點撥】此題主要考查了解直角三角形的應(yīng)用,正確應(yīng)用銳角三角函數(shù)關(guān)系是解題關(guān)鍵.23、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面積=1.【解題分析】

(1)依據(jù)點P運動的路程為x,△ABP的面積為y,即可得到自變量和因變量;(2)依據(jù)函數(shù)圖象,即可得到點P運動的路程x=4時,△ABP的面積;(3)根據(jù)圖象得出BC的長,以及此時三角形ABP面積,利用三角形面積公式求出AB的長即可;由函數(shù)圖象得出DC的長,利用梯形面積公式求出梯形ABCD面積即可.【題目詳解】(1)∵點P運動的路程為x,△ABP的面積為y,∴自變量為x,因變量為y.故答案為x,y;(2)由圖可得:當(dāng)點P運動的路程x=4時,△ABP的面積為y=2.故答案為2;(3)根據(jù)圖象得:BC=4,此時△ABP為2,∴AB?BC=2,即×AB×4=2,解得:AB=8;由圖象得:DC=9﹣4=5,則S梯形ABCD=×BC×(DC+AB)=×4×(5+8)=1.【題目點撥】本題考查了動點問題的函數(shù)圖象,弄清函數(shù)圖象上的信息是解答本題的關(guān)鍵.24、(1)①∠BEF=60°;②AB'∥EF,證明見解析;(2)△CB′F周長的最小值5+5;(3)PB′=.【解題分析】

(1)①當(dāng)△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論