版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題3-3利用導(dǎo)數(shù)解決單調(diào)性含參討論問題(解答題)目錄TOC\o"1-1"\h\u專題3-3利用導(dǎo)數(shù)解決單調(diào)性含參討論問題(解答題) 1 1題型一:導(dǎo)函數(shù)有效部分是一次型 1題型二:導(dǎo)函數(shù)有效部分可視為一次型 4題型三:導(dǎo)函數(shù)有效部分是二次型(可因式分解) 8題型四:導(dǎo)函數(shù)有效部分是可視為二次型(可因式分解) 13題型五:導(dǎo)函數(shù)有效部分是二次型(不可因式分解) 18題型六:借助二階導(dǎo)函數(shù)討論單調(diào)性 20 22導(dǎo)函數(shù)有效部分對(duì)于SKIPIF1<0進(jìn)行求導(dǎo)得到SKIPIF1<0,對(duì)SKIPIF1<0初步處理(如通分),提出SKIPIF1<0的恒正部分,將該部分省略,留下的部分則為SKIPIF1<0的有效部分(如:SKIPIF1<0,則記SKIPIF1<0為SKIPIF1<0的有效部分).題型一:導(dǎo)函數(shù)有效部分是一次型【典型例題】例題1.(2022·北京八十中模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程;(2)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;【答案】(1)SKIPIF1<0;(2)答案見解析;(1)由題設(shè),SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0.(2)由SKIPIF1<0且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,即SKIPIF1<0在定義域上遞減;當(dāng)SKIPIF1<0時(shí),在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0遞減,在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0遞增,綜上,SKIPIF1<0時(shí)SKIPIF1<0遞減;SKIPIF1<0時(shí)SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0上遞增.例題2.(2022·河北滄州·二模)已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的單調(diào)區(qū)間;【答案】(1)答案見解析(1)函數(shù)SKIPIF1<0,定義域?yàn)镾KIPIF1<0,(i)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增;(ii)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減;SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,綜上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,無單調(diào)遞減區(qū)間;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,單調(diào)遞增區(qū)間為SKIPIF1<0.【提分秘籍】在例題1中,SKIPIF1<0,可提取有效部分為SKIPIF1<0,只要討論有效部分SKIPIF1<0的正負(fù)即可;在例題2中SKIPIF1<0,可提取有效部分為SKIPIF1<0,只要討論有效部分SKIPIF1<0的正負(fù)即可.【變式演練】1.(2022·北京延慶·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0.SKIPIF1<0(1)若SKIPIF1<0,求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)求SKIPIF1<0的極值和單調(diào)區(qū)間;【答案】(1)SKIPIF1<0(2)答案見解析(1)當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0,SKIPIF1<0.
所以SKIPIF1<0,SKIPIF1<0.
所以曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程SKIPIF1<0.(2)函數(shù)SKIPIF1<0定義域SKIPIF1<0.
求導(dǎo)得SKIPIF1<0.
①當(dāng)SKIPIF1<0時(shí),因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故SKIPIF1<0的單調(diào)遞減區(qū)間是SKIPIF1<0,此時(shí)SKIPIF1<0無極值.
②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0變化時(shí),SKIPIF1<0變化如下表:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0極小值SKIPIF1<0所以SKIPIF1<0的單調(diào)遞減區(qū)間是SKIPIF1<0,單調(diào)遞增區(qū)間是SKIPIF1<0.
此時(shí)函數(shù)SKIPIF1<0的極小值是SKIPIF1<0,無極大值.2.(2022·安徽·碭山中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;【答案】(1)答案見解析;【詳解】(1)由題意得,SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),令SKIPIF1<0,解得SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;綜上所述,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.題型二:導(dǎo)函數(shù)有效部分可視為一次型【典型例題】例題1.(2022·青?!ず|市第一中學(xué)模擬預(yù)測(cè)(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為自然對(duì)數(shù)的底數(shù).(1)討論SKIPIF1<0的單調(diào)性;【答案】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減.(1)SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.②當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減.例題2.(2022·全國(guó)·模擬預(yù)測(cè)(文))設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;【答案】(1)答案見解析;(1)SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,則SKIPIF1<0在SKIPIF1<0上為減函數(shù),當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,綜上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的減區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0.【提分秘籍】在例題1中,SKIPIF1<0,可提取有效部分為SKIPIF1<0,可以看作一次型,類似一次型討論方式討論SKIPIF1<0的正負(fù);在例題2中SKIPIF1<0,可提取有效部分為SKIPIF1<0,可以看作一次型,只要討論有效部分SKIPIF1<0的正負(fù)即可.【變式演練】1.(2022·浙江·鎮(zhèn)海中學(xué)高二期中)已知函數(shù)SKIPIF1<0,其中SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;【答案】(1)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;【詳解】(1)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,綜上,SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.2.(2022·全國(guó)·高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)討論函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的單調(diào)性.【答案】(1)SKIPIF1<0;(2)見解析(1)SKIPIF1<0時(shí),SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0(2)由題意,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上恒成立,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,得SKIPIF1<0,①當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上恒成立,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;②當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;③當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上恒成立,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;綜上,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;題型三:導(dǎo)函數(shù)有效部分是二次型(可因式分解)【典型例題】例題1.(2022·四川省遂寧市教育局模擬預(yù)測(cè)(文))已知函數(shù)SKIPIF1<0(1)討論SKIPIF1<0的單調(diào)性;【答案】(1)答案不唯一,具體見解析;【詳解】(1)函數(shù)SKIPIF1<0定義域R,求導(dǎo)得SKIPIF1<0,若SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增;若SKIPIF1<0,恒有SKIPIF1<0.即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;若SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,所以當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的遞減區(qū)間是SKIPIF1<0,遞增區(qū)間是SKIPIF1<0和SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的遞減區(qū)間是SKIPIF1<0,遞增區(qū)間是SKIPIF1<0和SKIPIF1<0.例題2.(2022·湖北武漢·高二期末)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若曲線SKIPIF1<0與曲線SKIPIF1<0在它們的交點(diǎn)SKIPIF1<0處具有公共切線,求SKIPIF1<0的值;(2)當(dāng)SKIPIF1<0,且SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的單調(diào)區(qū)間.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)答案見解析(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0在交點(diǎn)SKIPIF1<0處具有公共切線,SKIPIF1<0;又SKIPIF1<0,SKIPIF1<0由SKIPIF1<0得:SKIPIF1<0.(2)當(dāng)SKIPIF1<0時(shí),設(shè)SKIPIF1<0,SKIPIF1<0;設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,單調(diào)遞增區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0;①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0時(shí),SKIPIF1<0恒成立,即SKIPIF1<0,SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,無單調(diào)遞增區(qū)間;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0;SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,SKIPIF1<0;單調(diào)遞增區(qū)間為SKIPIF1<0;綜上所述:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,單調(diào)遞增區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,無單調(diào)遞增區(qū)間;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,SKIPIF1<0;單調(diào)遞增區(qū)間為SKIPIF1<0.【提分秘籍】討論含參函數(shù)單調(diào)性問題時(shí),求完導(dǎo)函數(shù)后,如果導(dǎo)函數(shù)是二次型,優(yōu)先考慮是否可以因式分解,如例題1:SKIPIF1<0,在討論正負(fù)的過程中,遵循三個(gè)原則:準(zhǔn)則1:最高項(xiàng)系數(shù)含參,從參數(shù)為0開始討論;準(zhǔn)則2:兩根大小不確定,從兩根相等開始討論;準(zhǔn)則3:判斷兩根是否在定義域內(nèi).如例題1中從SKIPIF1<0開始討論。例題2中求導(dǎo)后SKIPIF1<0,記有效部分為SKIPIF1<0,由于最高項(xiàng)系數(shù)含參數(shù)SKIPIF1<0,討論時(shí)從SKIPIF1<0開始討論,當(dāng)SKIPIF1<0時(shí),從SKIPIF1<0開始討論.【變式演練】1.(2022·陜西西安·模擬預(yù)測(cè)(文))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的極值;(2)討論函數(shù)SKIPIF1<0的單調(diào)性.【答案】(1)極小值為SKIPIF1<0,無極大值(2)答案見解析【詳解】(1)易知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0.令SKIPIF1<0,得SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0.∴函數(shù)SKIPIF1<0的極小值為SKIPIF1<0,無極大值.(2)SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,得SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0.②當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0;令SKIPIF1<0.得SKIPIF1<0.③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立.④當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0.綜上,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0,減區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0和SKIPIF1<0,減區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0和SKIPIF1<0,減區(qū)間為SKIPIF1<0.2.(2022·湖南·高三開學(xué)考試)已知函數(shù)SKIPIF1<0,其中SKIPIF1<0.(1)若直線SKIPIF1<0是曲線SKIPIF1<0的切線,求負(fù)數(shù)SKIPIF1<0的值;(2)設(shè)SKIPIF1<0.(i)討論函數(shù)SKIPIF1<0的單調(diào)性;【答案】(1)SKIPIF1<0(2)(i)答案見解析;(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0由直線SKIPIF1<0是曲線SKIPIF1<0的切線可知SKIPIF1<0,即SKIPIF1<0又SKIPIF1<0,所以SKIPIF1<0,則切點(diǎn)坐標(biāo)為SKIPIF1<0,所以SKIPIF1<0故SKIPIF1<0.(2)(i)SKIPIF1<0.①若SKIPIF1<0即SKIPIF1<0的解為SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增;②若SKIPIF1<0即SKIPIF1<0的解為SKIPIF1<0或SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減③若SKIPIF1<0即SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;④若SKIPIF1<0即SKIPIF1<0的解為SKIPIF1<0或SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減.綜上所述:若SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增;若SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減;若SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;若SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減.題型四:導(dǎo)函數(shù)有效部分是可視為二次型(可因式分解)【典型例題】例題1.(2022·重慶·高三階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;【答案】(1)答案見解析【詳解】(1)SKIPIF1<0,當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;綜上可知:SKIPIF1<0時(shí),故SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;例題2.(2022·天津市寶坻區(qū)第一中學(xué)二模)已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的最小值;(2)若SKIPIF1<0,討論SKIPIF1<0在區(qū)間SKIPIF1<0上的單調(diào)性;【答案】(1)SKIPIF1<0(2)分類討論,答案見解析.(1)SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,SKIPIF1<0單調(diào)遞減.SKIPIF1<0得SKIPIF1<0,SKIPIF1<0單調(diào)遞增,∴SKIPIF1<0.(2)SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,有SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí).SKIPIF1<0,有SKIPIF1<0單調(diào)遞減,SKIPIF1<0,有SKIPIF1<0單調(diào)遞增,綜上所述,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.【提分秘籍】討論含參函數(shù)單調(diào)性問題時(shí),求完導(dǎo)函數(shù)后,如果導(dǎo)函數(shù)是二次型,優(yōu)先考慮是否可以因式分解,如例題1:SKIPIF1<0,在討論正負(fù)的過程中,SKIPIF1<0的正負(fù),可以看做SKIPIF1<0的正負(fù)等同,故為可視為二次函數(shù)型.解題時(shí),依然遵循三個(gè)原則:準(zhǔn)則1:最高項(xiàng)系數(shù)含參,從參數(shù)為0開始討論;準(zhǔn)則2:兩根大小不確定,從兩根相等開始討論;準(zhǔn)則3:判斷兩根是否在定義域內(nèi).【變式演練】1.(2022·廣東·潮州市綿德中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0在SKIPIF1<0上的最小值;(2)討論函數(shù)SKIPIF1<0的單調(diào)性.【答案】(1)SKIPIF1<0(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0;單調(diào)遞減區(qū)間為SKIPIF1<0.(1)SKIPIF1<0定義域?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;∴SKIPIF1<0在在SKIPIF1<0上的最小值為SKIPIF1<0;(2)SKIPIF1<0定義域?yàn)镾KIPIF1<0,SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0得SKIPIF1<0或SKIPIF1<0.②當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;③當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0或SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0,SKIPIF1<0單調(diào)遞減;④當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0,SKIPIF1<0在定義域上恒成立,SKIPIF1<0單調(diào)遞增;⑤當(dāng)SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0或SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0,SKIPIF1<0單調(diào)遞減;綜上所述:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0;單調(diào)遞減區(qū)間為SKIPIF1<02.(2022·河北·高二期中)已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的圖象在SKIPIF1<0處的切線方程;(2)討論SKIPIF1<0的單調(diào)性.【答案】(1)SKIPIF1<0(2)答案見解析(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0.則SKIPIF1<0,故SKIPIF1<0的圖象在SKIPIF1<0處的切線方程為SKIPIF1<0.(2)SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0恒成立,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)單調(diào)遞增.若SKIPIF1<0,則由SKIPIF1<0,得SKIPIF1<0.當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),若SKIPIF1<0,則SKIPIF1<0,函數(shù)單調(diào)遞增;若SKIPIF1<0,則SKIPIF1<0,函數(shù)單調(diào)遞減.當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí),SKIPIF1<0在R上恒成立,函數(shù)單調(diào)遞增.當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),若SKIPIF1<0,則SKIPIF1<0,函數(shù)單調(diào)遞增;若SKIPIF1<0,則SKIPIF1<0,函數(shù)單調(diào)遞減.綜上所述,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0和SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在R上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0和SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0.題型五:導(dǎo)函數(shù)有效部分是二次型(不可因式分解)【典型例題】例題1.(2022·天津河西·一模)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的極值.(2)討論SKIPIF1<0的單調(diào)性;【答案】(1)極大值為SKIPIF1<0,無極小值(2)答案見解析(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0SKIPIF1<02SKIPIF1<0SKIPIF1<0+0-SKIPIF1<0單調(diào)遞增SKIPIF1<0單調(diào)遞減所以SKIPIF1<0的極大值為SKIPIF1<0,無極小值.(2)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,對(duì)于二次方程SKIPIF1<0,有SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0有兩根SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;若SKIPIF1<0,SKIPIF1<0在SKIPIF1<0與SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.【提分秘籍】如本例,求導(dǎo)后SKIPIF1<0,記導(dǎo)函數(shù)有效部分為SKIPIF1<0,判斷為不可因式分解的二次型,此類題型的方法主要采用SKIPIF1<0法;分兩類:①SKIPIF1<0;②SKIPIF1<0,利用求根公式求出方程SKIPIF1<0的兩個(gè)根SKIPIF1<0,SKIPIF1<0,然后再討論SKIPIF1<0的正負(fù),進(jìn)而討論單調(diào)性,同時(shí)也要注意定義域.【變式演練】1.(2022·內(nèi)蒙古包頭·一模(文))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;【答案】(1)答案見解析(1)由題意可知SKIPIF1<0的定義域?yàn)镽,SKIPIF1<0,對(duì)于SKIPIF1<0,SKIPIF1<0.①當(dāng)SKIPIF1<0,即-3≤a≤3時(shí)SKIPIF1<0,SKIPIF1<0在R上單調(diào)遞增;②當(dāng)SKIPIF1<0,即a<-3或a>3時(shí),令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0;所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.綜上,當(dāng)-3≤a≤3時(shí),SKIPIF1<0在R上單調(diào)遞增;當(dāng)a<-3或a>3時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.題型六:借助二階導(dǎo)函數(shù)討論單調(diào)性【典型例題】例題1.(2022·全國(guó)·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0(1)當(dāng)SKIPIF1<0時(shí),討論SKIPIF1<0單調(diào)性;【答案】(1)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增;(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,定義域?yàn)镾KIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增.綜上,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.例題2.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的單調(diào)區(qū)間;【答案】(1)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增(1)SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0單調(diào)遞增,注意到SKIPIF1<0∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0,SKIPIF1<0單調(diào)遞增∴SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增【提分秘籍】當(dāng)一階導(dǎo)函數(shù)中含有SKIPIF1<0,SKIPIF1<0,而一階導(dǎo)的正負(fù)難以確定時(shí),可以通過求二階導(dǎo),從而判斷一階導(dǎo)的單調(diào)性,進(jìn)而判斷一階導(dǎo)的正負(fù)來討論單調(diào)性.【變式演練】1.(2022·河南南陽·高二期中(理))已知函數(shù)SKIPIF1<0.(1)判斷函數(shù)SKIPIF1<0的單調(diào)性.【答案】(1)SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0.因?yàn)楫?dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.1.(2022·貴州貴陽·模擬預(yù)測(cè)(理))已知SKIPIF1<0,函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;【答案】(1)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0遞增;SKIPIF1<0時(shí),SKIPIF1<0的增區(qū)間是SKIPIF1<0,減區(qū)間是SKIPIF1<0.【詳解】(1)SKIPIF1<0的定義域是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0遞增,SKIPIF1<0時(shí),SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0的增區(qū)間是SKIPIF1<0,減區(qū)間是SKIPIF1<0.綜上:SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0遞增;SKIPIF1<0時(shí),SKIPIF1<0的增區(qū)間是SKIPIF1<0,減區(qū)間是SKIPIF1<0.2.(2022·江蘇徐州·高三期中)已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0分別為函數(shù)SKIPIF1<0,SKIPIF1<0的導(dǎo)函數(shù).(1)討論函數(shù)SKIPIF1<0的單調(diào)性;【答案】(1)答案見解析【詳解】(1)SKIPIF1<0,SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)增;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)減;SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)增.綜上所述,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)增;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)減,在SKIPIF1<0上單調(diào)增3.(2022·江蘇·華羅庚中學(xué)三模)已知函數(shù)SKIPIF1<0,SKIPIF1<0(SKIPIF1<0為自然對(duì)數(shù)的底數(shù),SKIPIF1<0).(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;【答案】(1)分類討論,答案見解析.(1)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),對(duì)任意的SKIPIF1<0,SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0的減區(qū)間為SKIPIF1<0,無增區(qū)間;②當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0可得SKIPIF1<0,由SKIPIF1<0可得SKIP
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 進(jìn)口委托代理合同
- 設(shè)計(jì)師聘用合同書
- 美容師聘用標(biāo)準(zhǔn)合同年
- 種苗采購的合同范本
- 互動(dòng)儀式鏈視角下輪崗教師專業(yè)引領(lǐng)的困境與破解
- 青春期父母預(yù)備手冊(cè)-隨筆
- 2025年湘教新版必修1物理下冊(cè)月考試卷含答案
- 2025年外研版三年級(jí)起點(diǎn)九年級(jí)歷史下冊(cè)階段測(cè)試試卷含答案
- 智能客服系統(tǒng)合作開發(fā)合同(2篇)
- 2025年外研版三年級(jí)起點(diǎn)九年級(jí)地理上冊(cè)階段測(cè)試試卷
- 四年級(jí)四年級(jí)下冊(cè)閱讀理解20篇(附帶答案解析)經(jīng)典
- 大連高新區(qū)整體發(fā)展戰(zhàn)略規(guī)劃(產(chǎn)業(yè)及功能布局)
- 國(guó)有資產(chǎn)管理法律責(zé)任與風(fēng)險(xiǎn)防控
- 未婚生子的分手協(xié)議書
- 變更監(jiān)事章程修正案范例
- 北京小客車指標(biāo)租賃協(xié)議五篇
- 輸液室運(yùn)用PDCA降低靜脈輸液患者外滲的發(fā)生率品管圈(QCC)活動(dòng)成果
- YY/T 0681.2-2010無菌醫(yī)療器械包裝試驗(yàn)方法第2部分:軟性屏障材料的密封強(qiáng)度
- 煙氣管道阻力計(jì)算
- 城鄉(xiāng)環(huán)衛(wèi)一體化保潔服務(wù)迎接重大節(jié)日、活動(dòng)的保障措施
- 醫(yī)院-9S管理共88張課件
評(píng)論
0/150
提交評(píng)論