2024屆遼寧省臺安縣畢業(yè)升學考試模擬卷數(shù)學卷含解析_第1頁
2024屆遼寧省臺安縣畢業(yè)升學考試模擬卷數(shù)學卷含解析_第2頁
2024屆遼寧省臺安縣畢業(yè)升學考試模擬卷數(shù)學卷含解析_第3頁
2024屆遼寧省臺安縣畢業(yè)升學考試模擬卷數(shù)學卷含解析_第4頁
2024屆遼寧省臺安縣畢業(yè)升學考試模擬卷數(shù)學卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆遼寧省臺安縣畢業(yè)升學考試模擬卷數(shù)學卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列計算,正確的是()A. B.C.3 D.2.如圖,四邊形ABCD內(nèi)接于⊙O,若∠B=130°,則∠AOC的大小是()A.130° B.120° C.110° D.100°3.小明在一次登山活動中撿到一塊礦石,回家后,他使用一把刻度尺,一只圓柱形的玻璃杯和足量的水,就測量出這塊礦石的體積.如果他量出玻璃杯的內(nèi)直徑d,把礦石完全浸沒在水中,測出杯中水面上升了高度h,則小明的這塊礦石體積是()A. B. C. D.4.如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(-1,0),其部分圖象如圖所示,下列結(jié)論:①4ac<b2;②方程ax2+bx+c=0的兩個根是x1=-1,x2=3;③3a+c>0;④當y>0時,x的取值范圍是-1≤x<3;⑤當x<0時,y隨x增大而增大.其中結(jié)論正確的個數(shù)是()A.4個 B.3個 C.2個 D.1個5.如圖圖形中,是中心對稱圖形的是()A. B. C. D.6.一個不透明的布袋里裝有5個紅球,2個白球,3個黃球,它們除顏色外其余都相同,從袋中任意摸出1個球,是黃球的概率為()A. B. C. D.7.如圖,函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,點C在第一象限,AC⊥AB,且AC=AB,則點C的坐標為()A.(2,1) B.(1,2) C.(1,3) D.(3,1)8.據(jù)國土資源部數(shù)據(jù)顯示,我國是全球“可燃冰”資源儲量最多的國家之一,海、陸總儲量約為39000000000噸油當量,將39000000000用科學記數(shù)法表示為()A.3.9×1010 B.3.9×109 C.0.39×1011 D.39×1099.向某一容器中注水,注滿為止,表示注水量與水深的函數(shù)關(guān)系的圖象大致如圖所示,則該容器可能是()A. B.C. D.10.下列各式計算正確的是()A.(b+2a)(2a﹣b)=b2﹣4a2 B.2a3+a3=3a6C.a(chǎn)3?a=a4 D.(﹣a2b)3=a6b311.某單位組織職工開展植樹活動,植樹量與人數(shù)之間關(guān)系如圖,下列說法不正確的是()A.參加本次植樹活動共有30人 B.每人植樹量的眾數(shù)是4棵C.每人植樹量的中位數(shù)是5棵 D.每人植樹量的平均數(shù)是5棵12.已知為單位向量,=,那么下列結(jié)論中錯誤的是()A.∥ B. C.與方向相同 D.與方向相反二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知:如圖,AB為⊙O的直徑,點C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45o.則圖中陰影部分的面積是____________.14.如果點、是二次函數(shù)是常數(shù)圖象上的兩點,那么______填“”、“”或“”15.如圖,矩形紙片ABCD,AD=4,AB=3,如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,聯(lián)結(jié)FC,當△EFC是直角三角形時,那么BE的長為______.16.一個多邊形的內(nèi)角和比它的外角和的3倍少180°,則這個多邊形的邊數(shù)是______.17.計算:2a×(﹣2b)=_____.18.如圖的三角形紙片中,AB=8cm,BC=6cm,AC=5cm.沿過點B的直線折疊三角形,使點C落在AB邊的點E處,折痕為BD.則△AED的周長為____cm.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在?ABCD中,AE⊥BC交邊BC于點E,點F為邊CD上一點,且DF=BE.過點F作FG⊥CD,交邊AD于點G.求證:DG=DC.20.(6分)如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.求證:BC是⊙O的切線;已知AD=3,CD=2,求BC的長.21.(6分)先化簡再求值:(a﹣)÷,其中a=1+,b=1﹣.22.(8分)已知圓O的半徑長為2,點A、B、C為圓O上三點,弦BC=AO,點D為BC的中點,(1)如圖,連接AC、OD,設(shè)∠OAC=α,請用α表示∠AOD;(2)如圖,當點B為的中點時,求點A、D之間的距離:(3)如果AD的延長線與圓O交于點E,以O(shè)為圓心,AD為半徑的圓與以BC為直徑的圓相切,求弦AE的長.23.(8分)已知,求代數(shù)式的值.24.(10分)如圖,拋物線與x軸交于點A,B,與軸交于點C,過點C作CD∥x軸,交拋物線的對稱軸于點D,連結(jié)BD,已知點A坐標為(-1,0).求該拋物線的解析式;求梯形COBD的面積.25.(10分)如圖,某高速公路建設(shè)中需要確定隧道AB的長度.已知在離地面1500m高度C處的飛機上,測量人員測得正前方A、B兩點處的俯角分別為60°和45°.求隧道AB的長(≈1.73).26.(12分)如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PA、PB、AB、OP,已知PB是⊙O的切線.(1)求證:∠PBA=∠C;(2)若OP∥BC,且OP=9,⊙O的半徑為3,求BC的長.27.(12分)如圖,已知AB為⊙O的直徑,AC是⊙O的弦,D是弧BC的中點,過點D作⊙O的切線,分別交AC、AB的延長線于點E和點F,連接CD、BD.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】

根據(jù)二次根式的加減法則,以及二次根式的性質(zhì)逐項判斷即可.【題目詳解】解:∵=2,∴選項A不正確;∵=2,∴選項B正確;∵3﹣=2,∴選項C不正確;∵+=3≠,∴選項D不正確.故選B.【題目點撥】本題主要考查了二次根式的加減法,以及二次根式的性質(zhì)和化簡,要熟練掌握,解答此題的關(guān)鍵是要明確:二次根式相加減,先把各個二次根式化成最簡二次根式,再把被開方數(shù)相同的二次根式進行合并,合并方法為系數(shù)相加減,根式不變.2、D【解題分析】分析:先根據(jù)圓內(nèi)接四邊形的性質(zhì)得到然后根據(jù)圓周角定理求詳解:∵∴∴故選D.點睛:考查圓內(nèi)接四邊形的性質(zhì),圓周角定理,掌握圓內(nèi)接四邊形的對角互補是解題的關(guān)鍵.3、A【解題分析】圓柱體的底面積為:π×()2,∴礦石的體積為:π×()2h=.故答案為.4、B【解題分析】

解:∵拋物線與x軸有2個交點,∴b2﹣4ac>0,所以①正確;∵拋物線的對稱軸為直線x=1,而點(﹣1,0)關(guān)于直線x=1的對稱點的坐標為(3,0),∴方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3,所以②正確;∵x=﹣=1,即b=﹣2a,而x=﹣1時,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③錯誤;∵拋物線與x軸的兩點坐標為(﹣1,0),(3,0),∴當﹣1<x<3時,y>0,所以④錯誤;∵拋物線的對稱軸為直線x=1,∴當x<1時,y隨x增大而增大,所以⑤正確.故選:B.【題目點撥】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:對于二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大?。寒攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點位置:拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定:△=b2﹣4ac>0時,拋物線與x軸有2個交點;△=b2﹣4ac=0時,拋物線與x軸有1個交點;△=b2﹣4ac<0時,拋物線與x軸沒有交點.5、D【解題分析】

根據(jù)中心對稱圖形的概念和識別.【題目詳解】根據(jù)中心對稱圖形的概念和識別,可知D是中心對稱圖形,A、C是軸對稱圖形,D既不是中心對稱圖形,也不是軸對稱圖形.故選D.【題目點撥】本題考查中心對稱圖形,掌握中心對稱圖形的概念,會判斷一個圖形是否是中心對稱圖形.6、A【解題分析】

讓黃球的個數(shù)除以球的總個數(shù)即為所求的概率.【題目詳解】解:因為一共10個球,其中3個黃球,所以從袋中任意摸出1個球是黃球的概率是.

故選:A.【題目點撥】本題考查概率的基本計算,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.7、D【解題分析】

過點C作CD⊥x軸與D,如圖,先利用一次函數(shù)圖像上點的坐標特征確定B(0,2),A(1,0),再證明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,則C點坐標可求.【題目詳解】如圖,過點C作CD⊥x軸與D.∵函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,∴當x=0時,y=2,則B(0,2);當y=0時,x=1,則A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【題目點撥】本題主要考查一次函數(shù)的基本概念。角角邊定理、全等三角形的性質(zhì)以及一次函數(shù)的應(yīng)用,熟練掌握相關(guān)知識點是解答的關(guān)鍵.8、A【解題分析】

用科學記數(shù)法表示較大的數(shù)時,一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【題目詳解】39000000000=3.9×1.故選A.【題目點撥】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).9、D【解題分析】

根據(jù)函數(shù)的圖象和所給出的圖形分別對每一項進行判斷即可.【題目詳解】由函數(shù)圖象知:隨高度h的增加,y也增加,但隨h變大,每單位高度的增加,注水量h的增加量變小,圖象上升趨勢變緩,其原因只能是水瓶平行于底面的截面的半徑由底到頂逐漸變小,故D項正確.故選:D.【題目點撥】本題主要考查函數(shù)模型及其應(yīng)用.10、C【解題分析】各項計算得到結(jié)果,即可作出判斷.解:A、原式=4a2﹣b2,不符合題意;B、原式=3a3,不符合題意;C、原式=a4,符合題意;D、原式=﹣a6b3,不符合題意,故選C.11、D【解題分析】試題解析:A、∵4+10+8+6+2=30(人),∴參加本次植樹活動共有30人,結(jié)論A正確;B、∵10>8>6>4>2,∴每人植樹量的眾數(shù)是4棵,結(jié)論B正確;C、∵共有30個數(shù),第15、16個數(shù)為5,∴每人植樹量的中位數(shù)是5棵,結(jié)論C正確;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植樹量的平均數(shù)約是4.73棵,結(jié)論D不正確.故選D.考點:1.條形統(tǒng)計圖;2.加權(quán)平均數(shù);3.中位數(shù);4.眾數(shù).12、C【解題分析】

由向量的方向直接判斷即可.【題目詳解】解:為單位向量,=,所以與方向相反,所以C錯誤,故選C.【題目點撥】本題考查了向量的方向,是基礎(chǔ)題,較簡單.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(-)cm2【解題分析】S陰影=S扇形-S△OBD=52-×5×5=.故答案是:.14、【解題分析】

根據(jù)二次函數(shù)解析式可知函數(shù)圖象對稱軸是x=0,且開口向上,分析可知兩點均在對稱軸左側(cè)的圖象上;接下來,結(jié)合二次函數(shù)的性質(zhì)可判斷對稱軸左側(cè)圖象的增減性,【題目詳解】解:二次函數(shù)的函數(shù)圖象對稱軸是x=0,且開口向上,∴在對稱軸的左側(cè)y隨x的增大而減小,∵-3>-4,∴>.故答案為>.【題目點撥】本題考查了二次函數(shù)的圖像和數(shù)形結(jié)合的數(shù)學思想.15、1.5或3【解題分析】根據(jù)矩形的性質(zhì),利用勾股定理求得AC==5,由題意,可分△EFC是直角三角形的兩種情況:如圖1,當∠EFC=90°時,由∠AFE=∠B=90°,∠EFC=90°,可知點F在對角線AC上,且AE是∠BAC的平分線,所以可得BE=EF,然后再根據(jù)相似三角形的判定與性質(zhì),可知△ABC∽△EFC,即,代入數(shù)據(jù)可得,解得BE=1.5;如圖2,當∠FEC=90°,可知四邊形ABEF是正方形,從而求出BE=AB=3.故答案為1.5或3.點睛:此題主要考查了翻折變換的性質(zhì),勾股定理,矩形的性質(zhì),正方形的判定與性質(zhì),利用勾股定理列方程求解是常用的方法,本題難點在于分類討論,做出圖形更形象直觀.16、7【解題分析】根據(jù)多邊形內(nèi)角和公式得:(n-2).得:17、﹣4ab【解題分析】

根據(jù)單項式與單項式的乘法解答即可.【題目詳解】2a×(﹣2b)=﹣4ab.故答案為﹣4ab.【題目點撥】本題考查了單項式的乘法,關(guān)鍵是根據(jù)單項式的乘法法則解答.18、7【解題分析】

根據(jù)翻折變換的性質(zhì)可得BE=BC,DE=CD,然后求出AE,再求出△ADE的周長=AC+AE.【題目詳解】∵折疊這個三角形點C落在AB邊上的點E處,折痕為BD,∴BE=BC,DE=CD,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周長=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.故答案為:7.【題目點撥】本題考查了翻折變換的性質(zhì),翻折前后對應(yīng)邊相等,對應(yīng)角相等.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、證明見解析.【解題分析】試題分析:先由平行四邊形的性質(zhì)得到∠B=∠D,AB=CD,再利用垂直的定義得到∠AEB=∠GFD=90°,根據(jù)“ASA”判定△AEB≌△GFD,從而得到AB=DC,所以有DG=DC.試題解析:∵四邊形ABCD為平行四邊形,∴∠B=∠D,AB=CD,∵AE⊥BC,F(xiàn)G⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,∵∠B=∠D,BE=DF,∠AEB=∠GFD,∴△AEB≌△GFD,∴AB=DC,∴DG=DC.考點:1.全等三角形的判定與性質(zhì);2.平行四邊形的性質(zhì).20、(1)證明見解析(2)BC=【解題分析】

(1)AB是⊙O的直徑,得∠ADB=90°,從而得出∠BAD=∠DBC,即∠ABC=90°,即可證明BC是⊙O的切線;(2)可證明△ABC∽△BDC,則,即可得出BC=.【題目詳解】(1)∵AB是⊙O的切直徑,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切線;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴,即BC2=AC?CD=(AD+CD)?CD=10,∴BC=.考點:1.切線的判定;2.相似三角形的判定和性質(zhì).21、原式=【解題分析】

括號內(nèi)先通分進行分式的加減運算,然后再進行分式的乘除法運算,最后將數(shù)個代入進行計算即可.【題目詳解】原式===,當a=1+,b=1﹣時,原式==.【題目點撥】本題考查了分式的化簡求值,熟練掌握分式混合運算的運算順序以及運算法則是解題的關(guān)鍵.22、(1);(2);(3)【解題分析】

(1)連接OB、OC,可證△OBC是等邊三角形,根據(jù)垂徑定理可得∠DOC等于30°,OA=OC可得∠ACO=∠CAO=α,利用三角形的內(nèi)角和定理即可表示出∠AOD的值.(2)連接OB、OC,可證△OBC是等邊三角形,根據(jù)垂徑定理可得∠DOB等于30°,因為點D為BC的中點,則∠AOB=∠BOC=60°,所以∠AOD等于90°,根據(jù)OA=OB=2,在直角三角形中用三角函數(shù)及勾股定理即可求得OD、AD的長.(3)分兩種情況討論:兩圓外切,兩圓內(nèi)切.先根據(jù)兩圓相切時圓心距與兩圓半徑的關(guān)系,求出AD的長,再過O點作AE的垂線,利用勾股定理列出方程即可求解.【題目詳解】(1)如圖1:連接OB、OC.∵BC=AO∴OB=OC=BC∴△OBC是等邊三角形∴∠BOC=60°∵點D是BC的中點∴∠BOD=∵OA=OC∴=α∴∠AOD=180°-α-α-=150°-2α(2)如圖2:連接OB、OC、OD.由(1)可得:△OBC是等邊三角形,∠BOD=∵OB=2,∴OD=OB?cos=∵B為的中點,∴∠AOB=∠BOC=60°∴∠AOD=90°根據(jù)勾股定理得:AD=(3)①如圖3.圓O與圓D相內(nèi)切時:連接OB、OC,過O點作OF⊥AE∵BC是直徑,D是BC的中點∴以BC為直徑的圓的圓心為D點由(2)可得:OD=,圓D的半徑為1∴AD=設(shè)AF=x在Rt△AFO和Rt△DOF中,即解得:∴AE=②如圖4.圓O與圓D相外切時:連接OB、OC,過O點作OF⊥AE∵BC是直徑,D是BC的中點∴以BC為直徑的圓的圓心為D點由(2)可得:OD=,圓D的半徑為1∴AD=在Rt△AFO和Rt△DOF中,即解得:∴AE=【題目點撥】本題主要考查圓的相關(guān)知識:垂徑定理,圓與圓相切的條件,關(guān)鍵是能靈活運用垂徑定理和勾股定理相結(jié)合思考問題,另外需注意圓相切要分內(nèi)切與外切兩種情況.23、12【解題分析】解:∵,∴.∴.將代數(shù)式應(yīng)用完全平方公式和平方差公式展開后合并同類項,將整體代入求值.24、(1)(2)【解題分析】

(1)將A坐標代入拋物線解析式,求出a的值,即可確定出解析式.(2)拋物線解析式令x=0求出y的值,求出OC的長,根據(jù)對稱軸求出CD的長,令y=0求出x的值,確定出OB的長,根據(jù)梯形面積公式即可求出梯形COBD的面積.【題目詳解】(1)將A(―1,0)代入中,得:0=4a+4,解得:a=-1.∴該拋物線解析式為.(2)對于拋物線解析式,令x=0,得到y(tǒng)=2,即OC=2,∵拋物線的對稱軸為直線x=1,∴CD=1.∵A(-1,0),∴B(2,0),即OB=2.∴.25、簡答:∵OA,OB=OC=1500,∴AB=(m).答:隧道AB的長約為635m.【解題分析】試題分析:首先過點C作CO⊥AB,根據(jù)Rt△AOC求出OA的長度,根據(jù)Rt△CBO求出OB的長度,然后進行計算.試題解析:如圖,過點C作CO⊥直線AB,垂足為O,則CO="1500m"∵BC∥OB∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°∴在Rt△CAO中,OA=1500tan60°=1500×3在Rt△CBO中,OB=1500×tan45°=1500m∴AB=1500-5003≈1500-865=635(m)答:隧道AB的長約為635m.考點:銳角三角函數(shù)的應(yīng)用.26、(1)證明見解析;(2)BC=1.【解題分析】

(1)連接OB,根據(jù)切線的性質(zhì)和圓周角定理求出∠PBO=∠ABC=90°,即可求出答案;

(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論